Chemists May Have Found the 'Missing Link' to the First Life on Earth

Conceptual atoms and molecules
(Image credit: agsandrew/Shutterstock)

Four billion years ago, Earth was covered in a watery sludge swarming with primordial molecules, gases, and minerals — nothing that biologists would recognize as alive. Then somehow, out of that prebiotic stew emerged the first critical building blocks — proteins, sugars, amino acids, cell walls — that would combine over the next billion years to form the first specks of life on the planet.

A subset of chemists have devoted their careers to puzzling out the early chemical and environmental conditions that gave rise to the origins of life. With scant clues from the geological record, they synthesize simple molecules that may have existed billions of years ago and test if these ancient enzymes had the skills to turn prebiotic raw material into the stuff of life.

Ramanarayanan Krishnamurthy is an associate professor of chemistry at Scripps and lead author of the origins of life paper. For a number of years, his lab has been experimenting with a synthetic enzyme called diamidophosphate (DAP) that’s been shown to drive a critical chemical process called phosphorylation. Without phosphorylation — which is simply the process of adding a phosphate molecule to another molecule — life wouldn't exist.

"If you look at life today, and how it probably was at least three billion years ago, it was based on a lot of phosphorylation chemistry," Krishnamurthy told Seeker. "Your RNA, DNA, and a lot of your biomolecules are phosphorylated. So are sugars, amino acids, and proteins."

The enzymes that trigger phosphorylation are called kinases. They use phosphorylation to send signals instructing cells to divide, to make more of one protein than another, to tell DNA strands to separate, or RNA to form. DAP may have been one of the first primordial kinases to get the phosphorylation ball rolling, Krishnamurthy believed.  

Does that mean that DAP is the pixie dust that transformed random matter into life? Not quite, said Krishnamurthy.  

"The best we can do is try to demonstrate that simple chemicals under the right conditions could give rise to further chemistry which may lead to life-like behavior. We can't make a claim that this is the way that life formed on the early Earth."

"How do you remove water from a molecule when you are surrounded by a pool of water?" asked Krishnamurthy. "That's thermodynamically an uphill task."