space
Reference:

How Was Earth Formed?

There are two theories as to how planets in the solar system were created. The first and most widely accepted, core accretion, works well with the formation of the terrestrial planets like Earth but has problems with giant planets. The second, the disk instability method, may account for the creation of giant planets. Scientists are continuing to study planets in and out of the solar system in an effort to better understand which of these methods is most accurate.

The core accretion model

Approximately 4.6 billion years ago, the solar system was a cloud of dust and gas known as a solar nebula. Gravity collapsed the material in on itself as it began to spin, forming the sun in the center of the nebula.

With the rise of the sun, the remaining material began to clump up. Small particles drew together, bound by the force of gravity, into larger particles. The solar wind swept away lighter elements, such as hydrogen and helium, from the closer regions, leaving only heavy, rocky materials to create smaller terrestrial worlds like Earth. But farther away, the solar winds had less impact on lighter elements, allowing them to coalesce into gas giants. In this way, asteroids, comets, planets, and moons were created.

Earth's rocky core formed first, with heavy elements colliding and binding together. Dense material sank to the center, while the lighter pieces created the crust. The planet's magnetic field probably formed around this time. Gravity captured some of the lighter elements that make up the planet's early atmosphere.

Our Amazing Planet Top to Bottom Poster
Our Amazing Planet Top to Bottom Poster 18"x72" Poster. Buy Here
Credit: Space.com Store

Early in its evolution, Earth suffered an impact by a large body that catapulted pieces of the young planet's mantle into space.  Gravity caused many of these pieces to draw together and form the moon, which took up orbit around its creator.

The flow of the mantle beneath the crust causes plate tectonics, the movement of the large plates of rock on the surface of the Earth. collisions and friction gave rise to mountains and volcanoes, which began to spew gases into the atmosphere.

Although the population of comets and asteroids passing through the inner solar system is sparse today, they were more abundant when the planets and sun were young. Collisions from these icy bodies likely deposited much of the Earth's water on its surface. Because the planet is in the Goldilocks zone, the region where liquid water neither freezes nor evaporates bur can remain as a liquid, the water remained at the surface, which many feel plays a key role in the development of life.

The disk instability model

Although the core accretion model works fine for terrestrial planets, gas giants would have needed to evolve rapidly to grab hold of the significant mass of lighter gases they contain. But simulations have not been able to account for this rapid formation. According to models, the process takes several million years, longer than the light gases were available in the early solar system. At the same time, the core accretion model faces a migration issue, as the baby planets are likely to spiral into the sun in a short amount of time.

According to a relatively new theory, disk instability, clumps of dust and gas are bound together early in the life of the solar system. Over time, these clumps slowly compact into a giant planet. These planets can form faster than their core accretion rivals, sometimes in as little as a thousand years, allowing them to trap the rapidly-vanishing lighter gases. They also quickly reach an orbit-stabilizing mass that keeps them from death-marching into the sun.

As scientists continue to study planets inside of the solar system, as well as around other stars, they will better understand how Earth and its siblings formed.

—Nola Taylor Redd, SPACE.com Contributor

More from Space.com