Skip to main content
Expert Voices

James Webb Space Telescope: An astronomer explains the stunning, newly released 1st images

This photo by NASA's James Webb Space Telescope, which the agency unveiled on July 11, 2022, shows the galaxy cluster SMACS 0723 as it appeared 4.6 billion years ago. It’s the first science-quality image that the mission has revealed.
This photo by NASA's James Webb Space Telescope, which the agency unveiled on July 11, 2022, shows the galaxy cluster SMACS 0723 as it appeared 4.6 billion years ago. (Image credit: NASA, ESA, CSA, and STScI)

This article was originally published at The Conversation (opens in new tab). The publication contributed the article to Space.com's Expert Voices: Op-Ed & Insights (opens in new tab)

Silas Laycock (opens in new tab), Professor of Astronomy, UMass Lowell

The James Webb Space Telescope team has released the first science-quality images (opens in new tab) from the new telescope. In them are the oldest galaxies ever seen by human eyes, evidence of water on a planet 1,000 light-years away and incredible details showing the birth and death of stars. Webb's purpose is to explore origins — of the universe, of galaxies, of stars and of life — and the five images released on July 12, 2022, make good on that promise.

Once the suite of instruments onboard all cooled down and were running smoothly (opens in new tab), astronomers wasted no time in putting Webb to work. Each of the first images contains enough data to produce major scientific results on their own.

Related: NASA's James Webb Space Telescope mission: Live updates
Gallery: James Webb Space Telescope's 1st photos

Webb was designed to collect light across the entire red to mid-infrared spectrum (opens in new tab) — wavelengths of light that are blocked by Earth's atmosphere. And with its giant mirror and sun-shade blocking infrared emitted by the sun, Earth and moon, Webb can produce images of a sharpness never before achieved by any other telescope.

The buzz among professional astronomers like me (opens in new tab) has been electric since members of the Webb team shared tantalizing test images. And the real images are even better than anyone could have hoped for. During the presentation where the first images were released, Webb project scientist Jane Rigby remarked (opens in new tab), "For Webb, there is no blank sky; everywhere it looks it sees distant galaxies." Most of those galaxies were invisible until now.

Ancient galaxies and the early universe

The first Webb image the world saw is of a galaxy cluster known to astronomers as SMACS 0723 (opens in new tab). It lies in the southern hemisphere sky and is 5.12 billion light-years from Earth.

The detail of the thousands of individual galaxies in the image is stunning. It is like the universe in high definition, and I encourage you to look at the full resolution image (opens in new tab) and zoom in to truly appreciate the details.

The large white galaxies in the middle of the image belong to the cluster and are similar in age to the sun and Earth. Surrounding and interspersed among the cluster galaxies are more distant galaxies, but stretched into spectacular arcs as if seen through a magnifying glass. And that is exactly what is happening. The background galaxies are much farther from Earth but appear magnified, as their light is bent toward Earth by the gravity of the much closer cluster.

In the background, you can see faint red galaxies scattered like rubies across the sky. Those galaxies are even farther away. By measuring precise attributes of their light, astronomers can tell that they formed over 13 billion years ago and even determine the abundance of different elements in these early galaxies.

Webb is not only producing incredibly sharp images, but it is doing so easily when compared to its predecessor, the Hubble Space Telescope, which was launched in 1990. As Rigby quipped, "… the Hubble Extremely Deep Field took two weeks of exposure; Webb went deeper before breakfast." Once Webb carries out longer observations that allow it to collect more light from faint stars or galaxies, astronomers will be able to see some of the first stars and galaxies that formed right after the Big Bang.

The James Webb Space Telescope is sensitive enough to not only detect light that passes though the atmospheres of distant planets, but to measure the strength of this light at different wavelengths – as shown here – which can suggest the presence of water or other molecules in an atmosphere.

NASA's James Webb Space Telescope is sensitive enough to not only detect light that passes though the atmospheres of distant planets, but to measure the strength of this light at different wavelengths — as shown here — which can suggest the presence of water or other molecules in an atmosphere. (Image credit: NASA, ESA, CSA, and STScI)

Understanding planets around other stars

The second reveal was not of an image but a spectrum — a breakdown of the strength of light at different wavelengths.

Webb pointed its mirror at the exoplanet (opens in new tab) WASP 96-B — a giant hot gas planet orbiting a star about 1,000 light-years from Earth — as the planet passed in front of its parent star. During this transit, a portion of the star's light was filtered through the planet's atmosphere and left a "chemical fingerprint" in the light's unique spectrum. The specifics of this fingerprint strongly suggest that there are water vapor, clouds and haze in the atmosphere of WASP 96-B.

As Webb moves on to observe smaller planets that could potentially harbor life (opens in new tab), astronomers expect to detect the fingerprints of oxygen, nitrogen, ammonia and carbon in the form of methane and other hydrocarbons. The goal is to find biosignatures of life — that is, chemistry that would point toward the atmosphere being modified by living organisms.

The technical challenge of doing this type of observation, called transit spectroscopy, is enormous, and this initial result barely scratches the surface of the scientific content of the spectrum.

Related: The search for alien life (reference)

A composite image of the Cosmic Cliffs in the Carina Nebula, created with the Webb telescope’s NIRCam and MIRI instruments.

A composite image of the Cosmic Cliffs in the Carina Nebula, created with the James Webb Space Telescope's NIRCam and MIRI instruments. (Image credit: NASA, ESA, CSA, and STScI)

Galactic dances and the lives of stars

The last three images showed the incredible resolution of Webb's optics as the telescope explored the birth and death of stars.

Webb's ability to capture light in the mid-infrared range allows its cameras to cut through dense clouds of dust and gas. This ability helped Webb to capture spectacular details of the Carina Nebula (opens in new tab) where stars are born.

The image is split down the middle, showing two views of the Southern Ring Nebula.

These James Webb Space Telescope images show two views of the Southern Ring Nebula. (Image credit: NASA, ESA, CSA, and STScI)

Webb is also excellently suited to study the end of a star's life. As stars get old, they can puff off their outer layers and form nebulas like the stunning Southern Ring Nebula, which was imaged by Webb (opens in new tab). The image revealed never-before-seen details of successive waves of matter expelled by the dying central star. While Hubble was unable to see through the expanding cloud of dust and debris, Webb provided the first look at the binary star system that formed the nebula.

The last photo from Webb's coming out party showed Stephan's Quintet (opens in new tab), a group of five galaxies 300 million light-years from Earth, interacting in a cosmic dance. Thanks to the suite of complementary instruments aboard Webb, the telescope can simultaneously pick up details of individual stars in these galaxies, see the cold dust and gas fueling star formation within these galaxies and — most remarkably — block out the stars, gas and dust to see the material swirling around the supermassive black hole at the center of one of the galaxies.

This mosaic, a composite of near and mid-infrared data, is Webb’s largest image to date, covering an area of the sky 1/5 of the Moon’s diameter (as seen from Earth).

This mosaic, a composite of near and mid-infrared data showing a group of five galaxies known as Stephan's Quintet, is Webb's largest image to date, covering an area of the sky 1/5 of the moon’s diameter (as seen from Earth). (Image credit: NASA, ESA, CSA, and STScI)

Webb also captured data on the spectra of hundreds of individual star-forming regions in the Quintet, which will take months to analyze and study.

Webb is the result of 25 years of work by thousands of scientists, engineers and administrators belonging to an international collaboration of space agencies, companies, research centers and universities worldwide. John Mather, a project leader for Webb, emotionally described the journey (opens in new tab): "This was hard to do. It is difficult to express just how hard this was. There were so many thousands of ways it could have gone wrong."

But it didn't go wrong. It all came together, and now humanity's greatest space telescope is open for business.

This article is republished from The Conversation (opens in new tab) under a Creative Commons license. Read the original article (opens in new tab).

Follow all of the Expert Voices issues and debates — and become part of the discussion — on Facebook and Twitter. The views expressed are those of the author and do not necessarily reflect the views of the publisher. Follow us on Twitter @Spacedotcom (opens in new tab) or on Facebook (opens in new tab).

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Silas Laycock
Silas Laycock

I joined UMass Lowell in Fall 2010, following postdoctoral research at Gemini Observatory and Harvard Smithsonian Center for Astrophysics. I completed my Ph.D in Astronomy at the University of Southampton, UK in 2002. My research is focused on Pulsars, Black Holes, Binary Stars, X-rays, High Energy Radiation, Optical Spectroscopy, and Adaptive Optics.