Can Life Thrive Around a Red Dwarf Star?

Gliese 581 d, may be one of the most potentially habitable alien worlds known.
One of the several planets within the Gliese 581 star system, called Gliese 581 d, may be one of the most potentially habitable alien worlds known. It is about 8 times the mass of Earth, and located in an orbit just right for liquid water to exist on the surface. Water is a key ingredient for life as we know it. Gliese 581 is a red dwarf star 20.5 light-years from Earth (Image credit: ESO)

Roughly three quarters of the stars in the galaxy are reddwarfs, but planet searches have typically passed over these tiny faint starsbecause they were thought to be unfriendly to potential life forms.

But this prejudice has softened lately. Preliminary resultsfrom a dedicated research program have shown that planetsaround red dwarfs could be habitable if they can maintain a magnetic fieldfor a few billion years.

Red dwarfs — alsocalled M dwarfs — are between 7 and 60 percent as massive as our sun. ?Theirlower mass means they don?t burn as hot or as brightly, emitting less than 5percent as much light as the sun. However, they have strong magnetic activity,which makes them relatively bright in X-rays and UV radiation and causes themto flare frequently.

To understand the environment around these common stars, the"Living with a Red Dwarf" program was started three years ago. It ispiecing together observational data to provide a profile of how red dwarfs varyin brightness and magnetic activity as they age.

"This is the information that you would want to know tomodel the suitability for life on a nearby planet," says Ed Guinan ofVillanova University, a scientist working with the program.

Because they are so faint, the habitable zone — the distancefrom a star where liquid water can exist — is in many cases closer than theorbital distance between Mercury and our sun. When a planet orbits a star thisclosely, the gravitational pull of the star may cause the planet to become tidallylocked with the same side always facing the star (similar to the Moon's fixedgaze on the Earth).

"You probably want to live on the dark side,"Guinan says. "Or at least along the twilight zone where you would haveless exposure."?

To develop a model for how a star's magnetic activitychanges with time, Guinan and his colleague Scott Engle looked at the rotationrates of a large sample of red dwarfs. As expected, faster spinning stars hadmore X-ray and UV emission, as well as more flares.? The rotation causescharged material inside the star to be churned around, and this"dynamo" action generates a magnetic field. Gas around the starbecomes trapped in this field and heatedto millions of degrees. This hot gas produces the observed high energy radiation.

A planet with a substantial magnetic field, like Earth's,can deflect stellar winds and thereby avoid having its atmosphere stripped away.

"This could protect the planet for the 2 to 3 billionyears that a red dwarf is active," Guinan says.

To avoid this fate around a red dwarf, Guinan speculatesthat a planet might need to be more massive than Earth. The large liquid iron coreinside a super Earth (with a mass between 2 and 10 times Earth's) could perhapsmaintain a magnetic field in spite of the slower rotation rate.

"M dwarf stars were overlooked in the past, but theyhave become more popular as people realize that life could potentially arisearound them," Guinan says.

 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Michael Schirber
Contributing Writer

Michael Schirber is a freelance writer based in Lyons, France who began writing for Space.com and Live Science in 2004 . He's covered a wide range of topics for Space.com and Live Science, from the origin of life to the physics of NASCAR driving. He also authored a long series of articles about environmental technology. Michael earned a Ph.D. in astrophysics from Ohio State University while studying quasars and the ultraviolet background. Over the years, Michael has also written for Science, Physics World, and New Scientist, most recently as a corresponding editor for Physics.