Cluster Filled with Dark Matter May House 'Failed Galaxies'
The Coma Cluster, so-named for its parent constellation, Coma Berenices.
Credit: Jim Misti (Misti Mountain Observatory)

A strange set of 48 galaxies appears to be rich in dark matter and lacking in stars, suggesting that they may be so-called "failed" galaxies, a new study reports.

The galaxies in question are part of the Coma Cluster, which lies 300 million light-years from Earth and packs several thousand galaxies into a space just 20 million light-years across. To study them, Pieter van Dokkum of Yale University and his colleagues used the Dragonfly Telephoto Array in New Mexico.

The array's eight connected Canon telephoto lenses allow the researchers to search for extremely faint objects that traditional telescope surveys miss. Often, such as when the researchers used the array to search for the faint glow that dark matter might create, the hunt comes up empty. [Image Gallery: Dark Matter Throughout the Universe]

But when van Dokkum and his colleagues looked toward the Coma Cluster, they found a pleasant surprise.

"We noticed all these faint little smudges in the images from the Dragonfly telescope," van Dokkum told Space.com.

The mysterious blobs nagged at van Dokkum, compelling him to look into the objects further. Fortuitously, NASA's Hubble Space Telescope had recently captured one of these objects with its sharp eye.

"It turned out that they're these fuzzy blobs that look somewhat like dwarf spheroidal galaxies around our own Milky Way," van Dokkum said. "So they looked familiar in some sense … except that if they are at the distance of the Coma Cluster, they must be really huge."

And with very few stars to account for the mass in these galaxies, they must contain huge amounts of dark matter, the researchers said. In fact, to stay intact, the 48 galaxies must contain 98 percent dark matter and just 2 percent "normal" matter that we can see. The fraction of dark matter in the universe as a whole is thought to be around 83 percent. 

But before making this claim, the team had to verify that these blobs really are as distant as the Coma Cluster. (In fact, the team initially thought the galaxies were much closer.). But even in the Hubble image the stars were not resolved. If Hubble — one of the most powerful telescopes in existence — can't resolve the stars, those pinpricks of light must be pretty far away, study team members reasoned. 

Now, van Dokkum and his colleagues have definitive evidence: They've determined the exact distance to one of the galaxies. The team used the Keck Telescope in Hawaii to look at one of the objects for two hours. This gave them a hazy spectrum, from which they were able to tease out the galaxy's recessional velocity — that is, how fast it is moving away from Earth.

That measure traces back to the Hubble Telescope's namesake. In 1929, American astronomer Edwin Hubble discovered one of the simplest and most surprising relationships in astronomy: The more distant a galaxy, the faster it moves away from the Milky Way.

Today, astronomers use the relationship to measure a galaxy's recessional velocity and thus calculate the galaxy's distance. In this case, the small fuzzy blob observed with Keck was moving away from Earth at 15.7 million mph (25.3 million km/h). That places it at 300 million light-years away from Earth, the distance of the Coma Cluster.

So the verdict is officially in: These galaxies must be associated with the Coma Cluster and therefore must be extremely massive.

"It looks like the universe is able to make unexpected galaxies," van Dokkum said, adding that there is an amazing diversity of massive galaxies.

But the clusters still present a mystery: The team doesn't know why they have so much dark matter and so few stars.

Though they look serene and silent from our vantage on Earth, stars are actually roiling balls of violent plasma. Test your stellar smarts with this quiz.
Open Star Cluster Messier 50
0 of 10 questions complete
Star Quiz: Test Your Stellar Smarts
Though they look serene and silent from our vantage on Earth, stars are actually roiling balls of violent plasma. Test your stellar smarts with this quiz.
Open Star Cluster Messier 50
0 of questions complete

One possibility is that these are "failed" galaxies. A galaxy's first supernova explosions will drive away huge amounts of gas. Normally, the galaxy has such a strong gravitational pull that most of the expelled gas falls back onto the galaxy and forms the next generations of stars. But maybe the strong gravitational pull of the other galaxies in the Coma Cluster interfered with this process, pulling the gas away.

"If that happened, they had no more fuel for star formation and they were sort of stillborn galaxies where they started to get going but then failed to really build up a lot of stars," said van Dokkum, adding that this is the most likely scenario. [Supernova Explosion in Nearby Galaxy (Video)]

Another possibility is that these galaxies are in the process of being ripped apart. But astronomers expect that if this were the case, the galaxies would be distorted and streams of stars would be flowing away from them. Because these effects don't appear, this scenario is very unlikely.

The next step is to try to measure the individual motions of stars within the galaxies. If the team knew those stars' speeds, it could calculate the galaxies' exact mass, and therefore the amount of dark matter they contain. If the stars move faster, the galaxy is more massive. And if they move slower, the galaxy is less massive. However, this would require a better spectrum than the one the team has right now.

"But it's not outside the realm of what's possible," van Dokkum assured. "It's just very hard."

The original study has been published in Astrophysical Journal Letters. You can read it for free on the preprint site arXiv.org.

Follow Shannon Hallon Twitter @ShannonWHall. Follow us @Spacedotcom, Facebook and Google+. Original article on Space.com.