Did Deadly Gamma-Ray Burst Cause a Mass Extinction on Earth?

Gamma-Ray Burst
In this illustration, a jet is produced by an unusually bright gamma-ray burst. Scientists think next-generation laser facilities will be able to recreate the fundamental physics at the heart of these gamma-ray explosions. (Image credit: NASA/Swift/Cruz deWilde)

A gamma-ray burst, the most powerful kind of explosion known in the universe, may have triggered a mass extinction on Earth within the past billion years, researchers say.

These deadly outbursts could help explain the so-called Fermi paradox, the seeming contradiction between the high chance of alien life and the lack of evidence for it, scientists added.

If a gamma-ray burst exploded within the Milky Way, it could wreak extraordinary havoc if it were pointed directly at Earth, even from thousands of light-years away. Although gamma rays would not penetrate Earth's atmosphere well enough to burn the ground, they would chemically damage the atmosphere, depleting the ozone layer that protects the planet from damaging ultraviolet rays that could trigger mass extinctions. It's also possible that gamma-ray bursts may spew out cosmic rays, which are high-energy particles that may create an experience similar to a nuclear explosion for those on the side of the Earth facing the explosion, causing radiation sickness.

Gamma-ray bursts are traditionally divided into two groups — long and short — depending on whether they last more or less than 2 seconds. Long gamma-ray bursts are associated with the deaths of massive stars, while short gamma-ray bursts are most likely caused by the mergers of neutron stars.

For the most part, long gamma-ray bursts happen in galaxies very different from the Milky Way — dwarf galaxies low in any element heavier than hydrogen and helium. Any long gamma-ray bursts in the Milky Way will likely be confined in regions of the galaxy that are similarly low in any element heavier than hydrogen and helium, the researchers said.

These findings suggest that a nearby gamma-ray burst may have caused one of the five greatest mass extinctions on Earth, such as the Ordovician extinction that occurred 440 million years ago. The Ordovician extinction was the earliest of the so-called Big Five extinction events, and is thought by many to be the second largest. [Wipe Out: History's Most Mysterious Extinctions]

The scientists also investigated the danger that gamma-ray bursts may pose for life elsewhere in the Milky Way. Stars are packed more densely together toward the center of the galaxy, meaning worlds there face a greater danger of gamma-ray bursts. Worlds in the region about 6,500 light-years around the Milky Way's core, where 25 percent of the galaxy's stars reside, faced more than a 95 percent chance of a lethal gamma-ray burst within the past billion years. The researchers suggest that life as it is known on Earth could survive with certainty only in the outskirts of the Milky Way, more than 32,600 light-years from the galactic core.

"This may be an explanation, or at least a partial one, to what is called the Fermi paradox or the 'Big Silence,'" said lead study author Tsvi Piran, a physicist at the Hebrew University in Jerusalem. "Why we haven't encountered advanced civilizations so far? The Milky Way galaxy is much older than the solar system and there was ample time and ample space — the number of planetary systems with conditions similar to Earth is huge — for life to develop elsewhere in the galaxy. So why we haven't encountered advanced civilizations so far?"

The answer to Fermi's paradox may be that gamma-ray bursts have struck many life-harboring planets. The most severe criticism of these estimates "is that we address life as we know it on Earth," Piran told Live Science. "One can imagine very different forms of life that are resilient to the relevant radiation."

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Charles Q. Choi
Contributing Writer

Charles Q. Choi is a contributing writer for Space.com and Live Science. He covers all things human origins and astronomy as well as physics, animals and general science topics. Charles has a Master of Arts degree from the University of Missouri-Columbia, School of Journalism and a Bachelor of Arts degree from the University of South Florida. Charles has visited every continent on Earth, drinking rancid yak butter tea in Lhasa, snorkeling with sea lions in the Galapagos and even climbing an iceberg in Antarctica. Visit him at http://www.sciwriter.us