Extreme Earth Microbes Pave Way for Discovery of Alien Life

alvin deep sea vent
The research submarine Alvin reaches with its mechanical arm to a high-temperature black smoker at the Endeavour Segment, Juan de Fuca Ridge, to study methanogenic microbes. (Image credit: Bruce Strickrott of WHOI)

The region beneath Earth's surface may be crawling with diverse organisms, and now researchers reveal the lives of just one group of bizarre beasties: methane-spewing microbes that hide out in the cracks of hot undersea volcanoes.

Called high-temperature methanogens, these microbes rely on the hydrogen and carbon dioxide in their superheated deep-sea vents for growth, excreting waste products like methane.

"Evidence has built over the past 20 years that there's an incredible amount of biomass in the Earth's subsurface, in the crust and marine sediments, perhaps as much as all the plants and animals on the surface," microbiologist James Holden at the University of Massachusetts said in a statement. "We're interested in the microbes in the deep rock, and the best place to study them is at hydrothermal vents at undersea volcanoes. Warm water flows bring the nutrient and energy sources they need."

One way to figure out what's hidden beneath Earth's crust in extreme environments is to figure out the energy requirements of an organism and then see if various spots meet these thresholds for life. "We're really interested in the equivalent of, 'What is the size of your paycheck and what's the cost of living?'" Holden told LiveScience. "How much energy is available for microorganisms: the paycheck. And what's the lower threshold – they need this much energy to live in this environment." [Gallery: Unique Life at Deep-Sea Vents]

Alvin collected samples from the sites' black smokers, where mineral-rich, superheated water ? up to 662 degrees Fahrenheit (350 degrees Celsius) ? spews out of Earth's crust through cracks in the seafloor, and it also took samples from surrounding, lower-temperature waters.

In addition to painting a more comprehensive picture of Earth's biodiversity today, the findings may reveal what life was like on early Earth, "where we think [life] was independent of sun and oxygen," Holden said.

"How much energy is available and what's the 'cost of living' for these organisms, and could Mars have had enough energy to support this kind of life?" Holden said during a telephone interview.

This story was provided by LiveScience, a sister site to SPACE.com. Follow LiveScience on Twitter @livescience. We're also on Facebook & Google+.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Jeanna Bryner
Jeanna is the managing editor for LiveScience, a sister site to SPACE.com. Before becoming managing editor, Jeanna served as a reporter for LiveScience and SPACE.com for about three years. Previously she was an assistant editor at Science World magazine. Jeanna has an English degree from Salisbury University, a Master's degree in biogeochemistry and environmental sciences from the University of Maryland, and a science journalism degree from New York University. To find out what her latest project is, you can follow Jeanna on Google+.