Star Explodes, and So Might Theory

Star Explodes, and So Might Theory
At top, a 2005 ground-based photograph of the exploded star SN 2005gl in galaxy NGC 266. Bottom-left: a 1997 Hubble archival visible-light image of the region of the galaxy where the supernova exploded. The white circle marks the progenitor star. Bottom-center: Keck telescope near-infrared photo of the supernova explosion in 2005. Bottom-right: Visible-light Hubble follow-up image taken Sept. 26, 2007. Note that a bright source near the site of the supernova can be seen in all three panels, but the progenitor star is gone. Credits: See image for credits. (Image credit: NULL)

A massive star a million times brighter than our sun exploded way too early in its life, suggesting scientists don't understand stellar evolution as well as they thought.

"This might mean that we are fundamentally wrong about the evolution of massive stars, and that theories need revising," said Avishay Gal-Yam of the Weizmann Institute of Science in Rehovot, Israel.

According to theory, the doomed star, about 100 times our sun's mass, was not mature enough to have evolved a massive iron core of nuclear fusion ash, considered a prerequisite for a core implosion that triggers the sort of supernova blast that was seen.

The progenitor star was so bright that it probably belonged to a class of stars called Luminous Blue Variables (LBVs), "because no other type of star is as intrinsically brilliant," Gal-Yam said. As an LBV-class star evolves it sheds much of its mass through a violent stellar wind. Only at that point does it develop a large iron core, then the core collapses in an explosion.

"These observations demonstrate that many details in the evolution and fate of LBVs remain a mystery," said Mario Livio of the Space Telescope Science Institute in Baltimore. "We should continue to keep an eye on Eta Carinae, it may surprise us yet again,"

"The progenitor identification shows that, at least in some cases, massive stars explode before losing most of their hydrogen envelope, suggesting that the evolution of the core and the evolution of the envelope are less coupled than previously thought, a finding which may require a revision of stellar evolution theory," said study co-author Douglas Leonard from San Diego State University.

"This also leaves open the question that there may be other mechanisms for triggering supernova explosions," says Gal-Yam. "We may be missing something very basic in understanding how a superluminous star goes through mass loss."

Gal-Yam reports that the observation revealed that only a small part of the star's mass was flung off in the explosion. Most of the material, says Gal-Yam, was drawn into the collapsing core that has probably become a black hole estimated to be at least 10 to 15 solar masses.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Space.com Staff
News and editorial team

Space.com is the premier source of space exploration, innovation and astronomy news, chronicling (and celebrating) humanity's ongoing expansion across the final frontier. Originally founded in 1999, Space.com is, and always has been, the passion of writers and editors who are space fans and also trained journalists. Our current news team consists of Editor-in-Chief Tariq Malik; Editor Hanneke Weitering, Senior Space Writer Mike Wall; Senior Writer Meghan Bartels; Senior Writer Chelsea Gohd, Senior Writer Tereza Pultarova and Staff Writer Alexander Cox, focusing on e-commerce. Senior Producer Steve Spaleta oversees our space videos, with Diana Whitcroft as our Social Media Editor.