Space Farms Could Mine Minerals From Moon Dirt

Space Farms Could Mine Minerals From Moon Dirt
This illustration shows a lush green land on the moon inside a crater covered by a dome to protect and feed lunar astronauts while siphoning elements from the moon's regolith. (Image credit: Pat Rawlings/NASA)

Future manned missions to the moon orMars could use plantsas bio-harvesters to extract valuable elements from the alien soils,researchers say.

Now they hope to launch newexperiments to follow up ontests done with plants and lunar regolith during NASA's Apollo programthatlanded men on the moon.

"In spite of the fact that weabsolutely admire theinnovative science done in the Apollo era, the question of whether aplantcould grow if you plop a seed in lunar regolith hasn't been answered,"said Robert Ferl, a geneticist at the University of Florida inGainesville.

"It's not just about using lunar andMars regolith togrow plants," Paul explained. "It's about capturing nutrients thatmight otherwise be lost to us."

NASA took great precautions withsamples returned during thefirst manned missions to the Moon by building the Lunar Receiving Lab(LRL) atthe Johnson Space Center in Houston. The LRL facility's design intendedtoensure that no dangerous contaminants or unknown alien life formsescaped tothreaten Earth's biosphere, even as researchers began carrying outbiologicalexperiments with the lunar regolith.

 About 35 plant speciesremained in good health after lunarsamples from the Apollo 11 and 12 missions had been rubbed onto theleaves andplaced at their base. Similarly, animals did not suffer from any illeffectsduring exposure to lunar samples.

"In one interesting model put out afew years ago,plants would live in low-pressure pods on the surface," Ferl said."Astronauts or lunar colonists would go out in pressure suits tocapturethem."

"You have the colonization of theplant roots by a hostof organismsthat break down and transport materials," Paul said. "These thingsfacilitate the harvesting of molecules from the substrate in which theplant isgrowing."

New experiments don't need to waitfor a return trip to the Moon,according to the researchers. They already have plans that wouldrequire just afew grams of the hundreds of kilograms of lunar regolith collected byNASA.

"One goal is to use plants forlife-support and findout the best means to do that, and [figure out if] plants use lunarresourcesto do that," Ferl said. "The other question is what the limits ofterrestrial life are, and does the Moon's surface represent a placethatterrestrial biology can inhabit."

"Going to Mars is so much moredifficult, because theconcept of taking all your resources with you for the whole tripbecomes moredifficult," Paul said. "The drivers that would point toward usingplants for life support actually become more crucial."

"Testing on extreme environments onEarth could be veryuseful to identify critical design aspects to be fixed prior to buildand fly ademonstration system on the [International Space Station]," saidClaudioFinetto, an engineering consultant for Thales Alenia Space-Italia inTorino, Italy.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Contributing Writer

Jeremy Hsu is science writer based in New York City whose work has appeared in Scientific American, Discovery Magazine, Backchannel, Wired.com and IEEE Spectrum, among others. He joined the Space.com and Live Science teams in 2010 as a Senior Writer and is currently the Editor-in-Chief of Indicate Media.  Jeremy studied history and sociology of science at the University of Pennsylvania, and earned a master's degree in journalism from the NYU Science, Health and Environmental Reporting Program. You can find Jeremy's latest project on Twitter