Double Star Systems May Be Hiding a Third Companion

Wide Binary Star System
The widest binaries and triple systems have very elongated orbits, so the stars spend most of their time far apart. But once in every orbital revolution they are at their closest approach. (Image credit: Artist's impression by Karen Teramura (UH Institute for Astronomy), background photograph by Wei-Hao Wang)

Pairs of stars with separations five hundred times the size of the solar system could be triplets in disguise. New research indicates that many of the known wide binaries (double star systems) may have once contained three stars, and many could still harbor a third.

Bound together by gravity, binary stars make a large percentage of the universe. While most are close, some pairs can orbit with separations thousands of times larger than the distance between the Earth and the sun, known as an astronomical unit. But the wide spread between the two stars means that they couldn't have formed in the same cloud of dust and gas, leaving astronomers to puzzle over how they formed.

"This has been a long-time mystery about these very wide binaries," Bo Reipurth, of the University of Hawaii at Manoa, told SPACE.com.

Working with Seppo Mikkola of Finland's University of Turku, Reipurth proposed that three stars within a cloud of molecular gas and dust are gravitationally bound together soon after formation. The group starts their lives close together, but interactions between the three eventually result in one of the stars being hurled from the group. A strong enough push could remove the star from the system completely, but a weaker one results in a distant orbit. Sometimes the system may last for tens of thousands of centuries before losing the distant star; other times, it may stabilize enough to last billions of years.

Reipurth described the cloud as "a little bit like walking in mud."

"You feel a resistance," he said.

"This kind of evolution can only happen when you're inside a dense cloud core," he said. "It will not happen after the binary has blown away its gas and dust."

If a planet were orbiting one of these close binaries, it would experience an impressive double sunrise, but a third star would be so distant as to require a telescope to view. Likewise, people on a planet orbiting the distant star would see a single sunset, never realizing that another star or two made up their system. [Infographic: How 'Tatooine' Planets Orbit Twin Stars of Kepler-47]

Three's a crowd

"It's a fact of nature that, if you have two bodies alone, then they move in a completely deterministic way — it's possible to say exactly where they will be later on in their orbits," he said. "As soon as you put a third body in there, the system becomes completely chaotic."

Two bodies together will simply orbit one another, if not otherwise interrupted. But the third body creates a "kick" that eventually results in the ejection of one of the stars to a distant orbit.

"We were surprised to see how well the results agreed with the observations," Mikkola wrote in an email. "Getting the 'right' answer did not require any adjustments of the model."

Follow SPACE.com on Twitter @Spacedotcom. We're also on Facebook & Google+

Nola Taylor Tillman
Contributing Writer

Nola Taylor Tillman is a contributing writer for Space.com. She loves all things space and astronomy-related, and always wants to learn more. She has a Bachelor's degree in English and Astrophysics from Agnes Scott College and served as an intern at Sky & Telescope magazine. She loves to speak to groups on astronomy-related subjects. She lives with her husband in Atlanta, Georgia. Follow her on Bluesky at @astrowriter.social.bluesky