Astronomers Discover 18 Huge New Alien Planets

This artist's image shows a newly formed planet swimming through the gas and dust surrounding the star. Such a planet might scoop up gas and dust to build an atmosphere, which it could lose as it moves closer to its sun. Thus it could shift from a gas pla
This artist's image shows a newly formed planet swimming through the gas and dust surrounding the star. Such a planet might scoop up gas and dust to build an atmosphere, which it could lose as it moves closer to its sun. Thus it could shift from a gas planet to a terrestrial planet. (Image credit: NASA/ JPL-Caltech)

Astronomers have found 18 new alien planets, all of them Jupiter-size gas giants that circle stars bigger than our sun, a new study reports.

The discoveries increase the number of known planets orbiting massive stars by 50 percent. The exoplanet bounty should also help astronomers better understand how giant planets form and grow in nascent alien solar systems, researchers said.

Staring at 'retired' stars

The researchers surveyed about 300 stars using the Keck Observatory in Hawaii and instruments in Texas and Arizona. They focused on so-called "retired" type A stars that are at least 1.5 times more massive than our own sun.

These stars are just beyond the main stage of life — hence the name "retired" — and are now ballooning out to become what's known as subgiant stars.

The team scrutinized these stars, looking for slight wobbles caused by the gravitational tug of orbiting planets. This process revealed 18 new alien worlds, all of them with masses similar to Jupiter's. All 18 planets also orbit relatively far from their stars, at a distance of at least 0.7 times the span from Earth to the sun (about 93 million miles, or 150 million kilometers). [Gallery: The Strangest Alien Planets]

This theory, called core accretion, posits that planets grow as gas and dust glom onto seed particles in a protoplanetary disk. Core accretion predicts that the characteristics of a planetary system — the number and size of planets, for example — depend strongly on the mass of the star.

"It's nice to see all these converging lines of evidence pointing toward one class of formation mechanisms," study lead author John Johnson, of Caltech in Pasadena, said in a statement.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Space.com Staff
News and editorial team

Space.com is the premier source of space exploration, innovation and astronomy news, chronicling (and celebrating) humanity's ongoing expansion across the final frontier. Originally founded in 1999, Space.com is, and always has been, the passion of writers and editors who are space fans and also trained journalists. Our current news team consists of Editor-in-Chief Tariq Malik; Editor Hanneke Weitering, Senior Space Writer Mike Wall; Senior Writer Meghan Bartels; Senior Writer Chelsea Gohd, Senior Writer Tereza Pultarova and Staff Writer Alexander Cox, focusing on e-commerce. Senior Producer Steve Spaleta oversees our space videos, with Diana Whitcroft as our Social Media Editor.