Is Mining Rare Minerals on the Moon Vital to National Security?

Moon's Water May Be Bad News For Lunar Telescopes
This image of the moon is from NASA's Moon Mineralogy Mapper on the Indian Space Research Organization's Chandrayaan-1 mission. It is a three-color composite of reflected near-infrared radiation from the sun, and illustrates the extent to which different materials are mapped across the side of the moon that faces Earth. Small amounts of water and hydroxyl (blue) were detected on the surface of the moon at various locations. This image illustrates their distribution at high latitudes toward the poles. (Image credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS)

Theseemingly barren moon may actually be a treasure-trove of priceless resources:a potentially bountiful, mineral-rich ? yet untapped ? cosmic quarry. Still,few see the moon as an alluring mining site, ripe for the picking of rareelements of strategic and national security importance.

Hereon Earth, China recently blockedthe export of rare earth elements to Japan for use in an array of products;from wind turbines and glass for solar panels to use in hybrid cars, and evenguided missiles and other defense-oriented creations.

Amongthe policy options flagged in the Congressional Research Service assessment isestablishing a government-run economic stockpile and/or private-sectorstockpiles. Doing so "may be a prudent investment," the study noted,and would contain supplies of specific rare earth elements broadly needed for"green initiatives" and defense applications.

"Yes,we know there are local concentrations of REE on the moon," Pieters told SPACE.com,referring to rare earth elements by their acronym REE. "We also know fromthe returned samples that we have not sampled these REE concentrationsdirectly, but can readily detect them along a mixing line with many of thesamples we do have."

Pieterssaid lunar scientists have a good idea how lunar rare earth elements becameconcentrated ? it occurred as part of the moon's magma ocean differentiationsequence. But it is now also recognized that "early events disrupted andsubstantially reorganized that process in ways we are still trying todecipher," she added.

Withthe recent, but limited, new data for the moon from the international fleetof lunar orbiters with remote sensing instruments ?? from Europe, Japan,China, India and now the United States, "we are beginning to see directevidence for the activity of geologic processes that separate and concentratedifferent minerals," Pieters said.

"Theseelements are not incorporated into common rock-forming minerals during magmacrystallization ? hence they become enriched in the residual magma and in therocks that finally do form from it. This is especially so on the moon,"Gertsch said.

KREEPis exposed on the lunar surface in certain areas, Gertsch said. Although rareearth elements are not themselves presently detectable by remote instruments,spotting thorium sharpens the ability to spot associated rare-earth elements onthe moon's surface due to similar geochemical properties that caused them tocrystallize under the same conditions, she added. 

"However,separating rare earth elements from each other is difficult," Gertschnoted, "because there are few properties where they differ significantlyenough to permit efficient sorting of ore particles ? at least by standardmethods."

"PresumablyREE mixtures could be produced on the moon and shipped to Earth for morespecific separation. Neither potential mining methods nor the economics ofthis particular approach have been studied, to my knowledge," Gertschconcluded.

Solet's say that the moon is rife with rare earth elements ?what now?

"I think that the economies of production hold sway here," said DaleBoucher, director of innovation at the Canada-based Northern Center forAdvanced Technology Inc., in Sudbury, Ontario.

Thiswill only provide gradation data -- but settle the issue of valuable rareelements on the moon ? "which can then be used to determine expectedreturned value and information on the viability of extraction of any particularelement," Boucher explained.

"Itseems that there is significant quantity of REE's in North America, [it?s] justnot profitable to refine them ... yet. What value is the strategic element inthis? Can one put a price on this? If so, it may be economically viable toexplore the moon and extract the REEs," Boucher said.

Inthe end, the Boucher said, the whole premise revolves on a cost per pound atthe user's front door. "A very tough problem and well suited to a miningeconomist," he concluded.

Whilelunar rare earth elements may or may not be up for grabs, there's still anotherresource on the moon of high-value, argues one expert.

"Forrare earths, they are called rare for their low abundance, not economic value.However, some do have practical use in manufacturing, as in superconductingmagnets," said Paul Spudis, a planetary scientist and leading advocate forexploring the moon at the Lunar and Planetary Institute in Houston.

"Theonly possible use of such I have heard of is the possibility of mining lunarthorium ? not a rare earth, strictly speaking, but associated with them ? tofuel nuclear reactors for power generation at a lunar base. Quite a distantprospect, I suspect," Spudis advised.

"It'suseful for life support, energy storage, and propellant. It can be extracted onthe moon and exported to cislunar space to create a permanent transportationsystem," Spudis said. "That?s strategy for you!"

"Itis not possible to fully predict what will be important in the future, but Iexpect the answer is yes," Pieters said.

"Resourceknowledge is one aspect of lunar exploration that certainly drives the non-USspace-faring nations. It is disappointing that planners in our [U.S.] spaceprogram have not invested in that scope or time scale," Pieters added."Other than the flurry over looking for water in lunar polar shadows, noserious effort has been taken to document and evaluate the mineral resourcesthat occur on Earth?s nearest neighbor. Frustrating!"

LeonardDavid has been reporting on the space industry for more than five decades. Heis past editor-in-chief of the National Space Society's Ad Astra andSpace World magazines and has written for SPACE.com since 1999.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Leonard David
Space Insider Columnist

Leonard David is an award-winning space journalist who has been reporting on space activities for more than 50 years. Currently writing as Space.com's Space Insider Columnist among his other projects, Leonard has authored numerous books on space exploration, Mars missions and more, with his latest being "Moon Rush: The New Space Race" published in 2019 by National Geographic. He also wrote "Mars: Our Future on the Red Planet" released in 2016 by National Geographic. Leonard  has served as a correspondent for SpaceNews, Scientific American and Aerospace America for the AIAA. He has received many awards, including the first Ordway Award for Sustained Excellence in Spaceflight History in 2015 at the AAS Wernher von Braun Memorial Symposium. You can find out Leonard's latest project at his website and on Twitter.