Proof Is in the Cosmos: Einstein's General Relativity Confirmed

Composite image of the galaxy cluster Abell 2744, also known as Pandora's Cluster, taken by the Hubble and Chandra space telescopes and the Very Large Telescope in Chile. Hot intracluster gas is shown in pink, and the blue overlay maps the location of dar
Composite image of the galaxy cluster Abell 2744, also known as Pandora's Cluster, taken by the Hubble and Chandra space telescopes and the Very Large Telescope in Chile. Hot intracluster gas is shown in pink, and the blue overlay maps the location of dark matter. (Image credit: NASA, ESA, ESO, CXC, and D. Coe (STScI)/J. Merten (Heidelberg/Bologna))

Albert Einstein wins again. His general theory of relativity has proved accurate in predicting how light travels from some of the most distant galaxy clusters in the universe, according to new measurements.

However, the findings still do not disprove an alternative theory of gravity invented to undo the need for dark energy, which is thought to be causing the accelerated expansion of the universe.

The new findings come from a study of light from hundreds of thousands of distant galaxies. General relativity predicts that the wavelength of this light will be shifted by a small amount due to the galaxies' mass, in an effect called gravitational redshift.

"We have independent measurements of the cluster masses, so we can calculate what the expectation for gravitational redshift based on general relativity is," said University of Copenhagen astrophysicist Rados?aw Wojtak. "It agrees exactly with the measurements of this effect."

Wojtak is lead author of a paper reporting the results in tomorrow's (Sept. 29) issue of the journal Nature.

Where you have a large mass like a galaxy cluster, there is strong gravity and space-time is severely warped, causing time to move more quickly. Light emitted in this environment will have a certain frequency, which is related to the time scale (or the gravity strength) of the environment. When that light travels to a new environment, say to a telescope on Earth, where there is comparatively lower gravity, and time moves more slowly, the light's frequency will decrease. A decreased frequency is equivalent to a longer, or redder, wavelength. This is gravitational redshift.

"This was a groundbreaking experiment," Wojtak said.

"In our work we present for the first time the same effect but on a scale which is many orders of magnitude larger," Wojtak told LiveScience. "This is the only general relativistic effect which has been observed and confirmed locally on the Earth and on the scale corresponding to the universe. We have a link between our local scale of the Earth and galaxy clusters."

Within the framework of general relativity, scientists have invented concepts called dark matter and dark energy, respectively, to deal with these problems. But some researchers say these bizarre inventions aren't necessary if we simply tweak general relativity itself.

One such competing theory is called the f(R) theory. This model, too, agrees with Wojtak and his colleagues' new measurements. However, another alternative theory, called Tensor–vector–scalar gravity (TeVeS), does conflict with the new findings. To preserve the theory, physicists would have to make some changes. [Video: Dark Matter in 3-D]

"Discussions of gravity's properties will continue, but Wojtak and colleagues' pioneering work gives a glimpse of the potential of new cosmological tests for achieving higher precision when millions of galaxy redshifts, from which gravitational redshifts can be extracted, become available in the future," physicist Gary Wegner of Dartmouth College in New Hampshire, who was not involved in the new research, wrote in an accompanying essay in the same issue of Nature.

You can follow LiveScience senior writer Clara Moskowitz on Twitter @ClaraMoskowitz.Follow LiveScience for the latest in science news and discoveries on Twitter @livescience and on Facebook.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Clara Moskowitz
Assistant Managing Editor

Clara Moskowitz is a science and space writer who joined the Space.com team in 2008 and served as Assistant Managing Editor from 2011 to 2013. Clara has a bachelor's degree in astronomy and physics from Wesleyan University, and a graduate certificate in science writing from the University of California, Santa Cruz. She covers everything from astronomy to human spaceflight and once aced a NASTAR suborbital spaceflight training program for space missions. Clara is currently Associate Editor of Scientific American. To see her latest project is, follow Clara on Twitter.