Has Dark Matter Finally Been Seen? Time Will Tell

Universe's Energetic Cosmic Fog Stumps Scientists
This view of the gamma-ray sky is constructed from one year of Fermi Large Area Telescope (LAT) observations. The blue color includes the extragalactic gamma-ray background. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts — about 120 million times the energy of visible light — from different sky directions. Brighter colors represent higher rates. (Image credit: NASA/DOE/Fermi LAT Collaboration)

In a new finding that could have game-changing effects if borne out, two astrophysicists think they've finally tracked down the elusive signature of dark matter.

This invisible substance is thought to make up much of the universe ? but scientists have little idea what it is. They can only infer the existence of dark matter by measuring its gravitational tug on the normal matter that they can see.

Now, after sifting through observations of the center of our Milky Way galaxy, two researchers think they've found evidence of the annihilation of dark matter particles in powerful explosions.

"Nothing we tried besides dark matter came anywhere close to being able to accommodate the features of the observation," Dan Hooper, of the Fermi National Accelerator Laboratory in Batavia, Ill., and the University of Chicago, told SPACE.com. "It's always hard to be sure there isn't something you just haven't thought of. But I've talked to a lot of experts and so far I haven't heard anything that was a plausible alternative."

The idea of dark matter was first proposed in the 1930s, after the velocities of galaxies and stars suggested the universe contained much more mass than what could be seen. Dark matter would not reflect light, so it couldn't be observed directly by telescopes.?

Either way, the researchers think the Milky Way's gamma-ray glow is caused by dark matter explosions.

"It's the biggest thing that's happened in dark matter since we learned it existed," Hooper said. "So long as no unexpected alternative explanations come forward, I think yes, we've finally found it."

Hooper and Goodenough based their analysis on data released to the public from the Fermi observatory's Large Area Telescope. However, the official Fermi team, a large collaboration of international scientists, has not finished studying the intriguing glow. While they don't exclude the possibility that it is dark matter, team members are not ready to dismiss the possibility of another explanation.

"We feel that astrophysical interpretations for the gamma-ray signals from the region of the galactic center have to be further explored," said Seth Digel, analysis coordinator for the Large Area Telescope collaboration and a staff physicist at the SLAC National Accelerator Laboratory in Menlo Park, Calif. "I can't and won't say what they've done is wrong, but as a collaboration we don?t have our own final understanding of the data."

Fermi scientists stressed that the analysis of the Milky Way's center is very complex, because there are so many bright sources of gamma-ray light in this crowded region. Various types of spinning stars called pulsars, as well as remnants left over from supernovas, also contribute confusing signals.

"More work needs to be done in this direction, and people within the collaboration are working hard to accomplish this goal. Until this is done, it is too difficult to interpret the data," said Simona Murgia, another SLAC scientist and Fermi science team member.

"I want a lot of people who are experts to think about this hard and try to make it go away," he said. "If we all agree we can't, then we'll have our answer."

Two ground-based experiments aimed at detecting dark matter have found preliminary indications of particles with roughly the same mass. The University of Chicago's CoGeNT project, buried deep in the Soudan iron mine in northeastern Minnesota, and DAMA, an Italian experiment underground near the Gran Sasso Mountains outside of Rome, both found signals that they can't completely attribute to normal particles, but can't prove are from dark matter.

"Part of why this picture is so compelling has to do with those in fact," Hooper said. "I would argue that it's likely that all three of these experiments are seeing the same dark matter particle."

"It's a complicated task to interpret what Dan and Lisa are seeing," said Doug Finkbeiner, a researcher at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "I do not find it persuasive, but that doesn't mean it is wrong."

For now, though, he's still waiting.

"This result is very intriguing but doesn't yet rise to the Sagan standard ? extraordinary claims require extraordinary evidence," Turner said. Other explanations would have to be eliminated, he said. "Nature knows many ways to make gamma rays."

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Clara Moskowitz
Assistant Managing Editor

Clara Moskowitz is a science and space writer who joined the Space.com team in 2008 and served as Assistant Managing Editor from 2011 to 2013. Clara has a bachelor's degree in astronomy and physics from Wesleyan University, and a graduate certificate in science writing from the University of California, Santa Cruz. She covers everything from astronomy to human spaceflight and once aced a NASTAR suborbital spaceflight training program for space missions. Clara is currently Associate Editor of Scientific American. To see her latest project is, follow Clara on Twitter.