NASA Data Sheds Light on Early Universe

A treasure trove of data released by NASA this week is giving astronomers insight into what the universe is made up of and how it developed, including that it is awash in a sea of weightless sub-atomic particles.

The data were collected by the Wilkinson Microwave Anisotropy Probe (WMAP), which measures a remnant of the early universe - its oldest light. The conditions of the early universe are imprinted on this light, which lost energy as the universe expanded over 13.7 billion years. Because of this energy loss WMAP now sees the light as microwaves.

By making accurate measurements of microwave patterns, WMAP has answered many longstanding questions about the universe's age, composition and development.

"A block of lead the size of our entire solar system wouldn't even come close to stopping a cosmic neutrino," said team member Eiichiro Komatsu of the University of Texas at Austin.

This marks the first time that evidence for this so-called "cosmic neutrino background" has been gleaned from the microwaves.

Cosmic neutrinos existed in such huge numbers they affected the universe's early development. The hot and dense young universe was a nuclear reactor that produced helium. Theories based on the amount of helium seen today predict a sea of neutrinos should have been present when helium was made. The new WMAP data agree with that prediction, along with precise measurements of neutrino properties made by Earth-bound particle colliders.

Another breakthrough derived from WMAP data provide crucial new insights into the end of the "dark ages," when the first generation of stars began to shine. They provide clear evidence that the first stars took more than a half-billion years to create a cosmic fog.

The glow from these stars created a thin fog of electrons in the surrounding gas that scatters microwaves, in much the same way fog scatters the beams from a car's headlights.

"We now have evidence that the creation of this fog was a drawn-out process, starting when the universe was about 400 million years old and lasting for half a billion years," said WMAP team member Joanna Dunkley of the University of Oxford in the U.K. and Princeton University in Princeton, N.J.

WMAP data also places tight constraints on the astonishing burst of growth in the first trillionth of a second of the universe, called "inflation", when ripples in the very fabric of space may have been created. Some versions of the inflation theory now are eliminated. Others have picked up new support.

"The new WMAP data rule out many mainstream ideas that seek to describe the growth burst in the early universe," said WMAP principal investigator, Charles Bennett, of The Johns Hopkins University in Baltimore, Md. "It is astonishing that bold predictions of events in the first moments of the universe now can be confronted with solid measurements."

  • The Universe: 365 Days
  • About WMAP and the Cosmic Microwave Background
  • All About the Universe

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Space.com Staff
News and editorial team

Space.com is the premier source of space exploration, innovation and astronomy news, chronicling (and celebrating) humanity's ongoing expansion across the final frontier. Originally founded in 1999, Space.com is, and always has been, the passion of writers and editors who are space fans and also trained journalists. Our current news team consists of Editor-in-Chief Tariq Malik; Editor Hanneke Weitering, Senior Space Writer Mike Wall; Senior Writer Meghan Bartels; Senior Writer Chelsea Gohd, Senior Writer Tereza Pultarova and Staff Writer Alexander Cox, focusing on e-commerce. Senior Producer Steve Spaleta oversees our space videos, with Diana Whitcroft as our Social Media Editor.