The Science of Today's Spring Equinox

Spring Meadow
Spring is off to a warm start. (Image credit: © Tatiana Morozova | Dreamstime.com)

Today is the first day of spring in the Northern Hemisphere. Though no guarantee of gorgeous weather that's not too hot and not too cold, the Earth's position relative to the sun says it's officially time for the birds to start chirping.

The first day of spring arrives on varying dates (from March 19-21) in different years for two reasons: Our year is not exactly an even number of days; and Earth's slightly noncircular orbit, plus the gravitational tug of the other planets, constantly changes our planet's orientation to the sun from year to year.

This year, spring starts Tuesday, March 20, at 1:14 a.m EDT (05:14 Universal Time). That's when the so-called vernal equinox occurs. Equinoxes (which mark the onset of spring and autumn) and solstices (which mark when summer and winter begin) are points in time and space that mark a transition in our planet's annual trip around the sun.

At each equinox, the sun crosses Earth's equator, making night and day of approximately equal length on most of the planet. At the equator, the sun is directly overhead at noon on either equinox. However, day and night are not exactly equal on the date of the equinoxes. For instance, at higher latitudes in the Northern Hemisphere, the "equal day and night" occurs a few days before the spring equinox, while in the Southern Hemisphere that date comes after the March equinox, according to the National Weather Service. [Earth's Equinoxes & Solstices (Infographic)]

Earth's multiple motions — spinning on its axis and orbiting the sun — are behind everything from day and night to the changing seasons. The sun comes up each day because Earth rotates once on its axis every 24 hours or so. Seasons are a result of Earth being tilted 23.5 degrees on its spin axis coupled with the planet's 365-day orbit around the sun.

Imagine Earth as an apple sitting on one side of a table, with the stem being the North Pole. Tilt the apple 23.5 degrees so the stem points toward a candle (the sun) at the center of the table. That's summer for the top half of the apple.

Keep the stem pointing in the same direction but move the apple to the other side of the table: Now the stem points away from the candle, and it's winter on the top half of the fruit. The very top of the apple, representing the north polar region, is in total darkness 24 hours a day, during that season.

At winter solstice, the sun arcs low across the Northern Hemisphere sky for those of us below the Arctic Circle, and the stretch of daylight is at its shortest. By the time of the spring equinox, days have grown noticeably longer. At the summer solstice, the sun gets as high in our sky as it can go, yielding the longest day of the year in the Northern Hemisphere.

As we orbit the sun, the part of the night sky that's in our view changes. A given star sets about 4 minutes earlier each night, amounting to a change of two hours over the course of a month. In winter, this means that we're looking at stars that during the summer were in our daytime sky, overwhelmed of course by the glare of the sun. Since we complete a circle around the sun every year, the stars of summer, such as those in the Big Dipper, are always the stars of summer. [In Photos: 10 Amazing Moon Facts]

Mars: The red planet's distance from the sun varies between 1.64 and 1.36 astronomical units, where 1 AU is the distance between the sun and Earth. That large variation, along with its tilt as Mars spins on its axis, means some extreme seasonal shifts. When closest to the sun, Mars' north pole experiences winter, plunging to bone-chilling temperatures so icy that carbon dioxide (the primary chemical in the Martian atmosphere) freezes and falls to the ground.

Neptune: The farthest gas giant from the sun doesn't experience strong seasonal changes, though seasons there last 40 years.

This article was provided by LiveScience.com, a sister site of SPACE.com. Follow LiveScience for the latest in science news and discoveries on Twitter @livescience and on Facebook.   

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Partner website

For the science geek in everyone, Live Science breaks down the stories behind the most interesting news and photos on the Internet, while also digging up fascinating discoveries that hit on a broad range of fields, from dinosaurs and archaeology to wacky physics and astronomy to health and human behavior. If you want to learn something interesting every day, Live Science is the place for you.