Some Craters on the Moon May Be Electrified

Some Craters on the Moon May Be Electrified
New research from NASA's Lunar Science Institute indicates that the solar wind may be charging certain regions at the lunar poles to hundreds of volts. (Image credit: NASA/Goddard Space Flight Center)

Exploringthe craters at the moon's north and south poles may be even more challengingthan previously thought for future astronauts. New NASA calculations now showthat solar wind streaming over the rough lunar surface may electrically chargepolar craters on the moon.

The moon'spolar craters are of particular interest to researchers because resources,including water ice, exist at theselunar structures. The moon's orientation to the sun keeps the bottoms of polarcraters in permanent shadow, allowing temperatures there to plunge below minus400 degrees Fahrenheit (minus 240 degrees Celsius), cold enough to storevolatile material like water for billions of years.

"However,our research suggests that, in addition to the wicked cold, explorers androbots at the bottoms of polar lunar craters may have to contend with a complexelectrical environment as well, which can affect surface chemistry, staticdischarge, and dust cling," said William Farrell of NASA's Goddard SpaceFlight Center in Greenbelt, Md., the lead author of the study.

These newobservations contribute to our evolving understanding of the moon, said GregorySchmidt, deputy director of the NASA Lunar Science Institute at NASA's AmesResearch Center in Moffett Field, Calif.

"Thisimportant work by Dr. Farrell and his team is further evidence that our view onthe moon has changed dramatically in recent years," Schmidt said. "Ithas a dynamic and fascinating environment that we are only beginning tounderstand."

The ionseventually fill the crater, but at consistently lower concentrations than thatof the electrons. This imbalance in the crater makes the inside walls and flooracquire a negative electric charge. The researchers calculated that theelectron/ion separation effect is most extreme on a crater's leeward edge ?along the inside crater wall and at the crater floor nearest the solar windflow.

"Theelectrons build up an electron cloud on this leeward edge of the crater walland floor, which can create an unusually large negative charge of a few hundredvolts relative to the dense solar wind flowing over the top," Farrell said.

Still, thenegative charge along this leeward edge won't build up indefinitely.Eventually, the attraction between the negatively-charged region and positiveions in the solar wind will cause some other unusual electric current to flow.

"The Apollo astronauts in the orbitingCommand Module saw faint rays on the lunar horizon during sunrise that mighthave been scattered light from electrically lofted dust," Farrell said."Additionally, the Apollo 17 mission landed at a site similar to a craterenvironment ? the Taurus-Littrow valley. The Lunar Ejecta and MeteoriteExperiment left by the Apollo 17 astronauts detected impacts from dust atterminator crossings where the solar wind is nearly-horizontal flowing, similarto the situation over polar craters."

"Wewant to develop a fully three-dimensional model to examine the effects of solarwind expansion around the edges of a mountain," Farrell said. "We nowexamine the vertical expansion, but we want to also know what happenshorizontally."

NASA isplanning to launch the Lunar Atmosphere and Dust Environment Explorer (LADEE)as early as 2012, in a mission that will orbit the moon and could look forthe dust flows predicted by the team's research

The detailsof the study were published March 24 in the Journal of Geophysical Research.The research is part of the Lunar Science Institute's Dynamic Response of theEnvironment at the moon (DREAM) project. ?

Space.com Staff
News and editorial team

Space.com is the premier source of space exploration, innovation and astronomy news, chronicling (and celebrating) humanity's ongoing expansion across the final frontier. Originally founded in 1999, Space.com is, and always has been, the passion of writers and editors who are space fans and also trained journalists. Our current news team consists of Editor-in-Chief Tariq Malik; Editor Hanneke Weitering, Senior Space Writer Mike Wall; Senior Writer Meghan Bartels; Senior Writer Chelsea Gohd, Senior Writer Tereza Pultarova and Staff Writer Alexander Cox, focusing on e-commerce. Senior Producer Steve Spaleta oversees our space videos, with Diana Whitcroft as our Social Media Editor.