New Risk to Earth Found in Supernova Explosions

New Risk to Earth Found in Supernova Explosions
Eta Carinae is drawing closer to its ultimate explosive demise. When Eta Carinae explodes, it will be a spectacular fireworks display seen from Earth, perhaps rivaling the moon in brilliance. Its fate has been foreshadowed by the recent discovery of SN2006gy, a supernova in a nearby galaxy that was the brightest stellar explosion ever seen. This composite image shows optical light (blue) and X-ray light (orange and yellow). (Image credit: NASA/CXC/GSFC/STScI)

An explosive star within our galaxy is showingsigns of an impending eruption, at least in a cosmic time frame, and has forquite some time. From 1838 to 1858, the star called Eta Carinae brightened torival the light of Sirius, the brightest star in the sky, and then faded to adim star. Since 1940 it has been brightening again, and scientists think EtaCarinae will detonate in 10,000 to 20,000 years.

Fortunately, Eta Carinae is far away, at least7,500 light-years from Earth. If it explodes, most of its energy will bescattered or absorbed in the vast emptiness of space. It also happens to betilted about 45 degrees from the line of sight to Earth, so any type of gamma-rayburst, a high-energy outburst expected with this star's eventual eruption,would miss the Earth. Cosmic rays would be diffused by magnetic fields, and mostof the damaging light would not affect life on Earth.

In general, threatsto life on Earth from supernovae are extremely small, for all except thenearest explosions — those 30 light-years away or closer.

Brian Thomas at Washburn University has beenstudying the effects of astronomical explosions at the Goddard Space FlightCenter. He decided to investigate what would happen to Earth's protective ozonelayer if Eta Carinae explodes with the brilliance of SN 2006gy.

So would there be any damage to Earth from sucha spectacular event? Though Thomas found X-rays and cosmic rays would causelittle damage, he also looked at optical light, particularlyshort-wavelength blue light (400 nanometers), where the spectrum of SN 2006gypeaked. No one had ever considered the effects of this light before, eitherfrom supernovae or any other type of event.

?The visible light could be significant,? Thomassays, ?But this depends a little bit on your definition of significant.?

For those living where Eta Carina is alwaysabove the horizon (Antarctica, New Zealand and extreme southern regions of Australia and South America) the light would vastly outshine Venus, visible even during the day. Theradiation would illuminate the evening sky with a bluish glow nearly strongenough to read by, and the effect would likely last for months — perhaps six ormore.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.