Why string theory persists — despite the knotty physics
Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of Your Place in the Universe.
String theory is a hypothetical idea that purports to be a theory of everything, able to explain the fundamental microscopic aspects of all of reality, from the forces of nature to the building blocks of all matter. It's a powerful idea, unfinished and untested, but one that has persisted for decades.
But the theory itself had rather inauspicious beginnings, employed to explain the strong nuclear force. And it wasn't very good at it.
It's in the scattering
Up until the 1960s, physicists were feeling pretty confident: They had discovered what they thought to be the fundamental constituents of matter (protons, neutrons and electrons). And they had recently accomplished the feat of unifying quantum mechanics and special relativity with what they called quantum electrodynamics (QED), which was a completely quantum description of the electromagnetic force.
But then, they started developing incredibly powerful particle colliders, and suddenly, they weren't really liking what they were finding. In these instruments, the physicists found a bunch of brokenup protons and neutrons, revealing that these particles were not fundamental at all. And what's worse, the colliders started spitting all sorts of new kinds of particles: mesons, pions, kaons, resonances, the works.
And governing them all was an apparently new force of nature: the strong force.
The tools used to develop QED were simply falling apart with this diverse host of particles popping out of the colliders. Physicists were at a loss and willing to try new ideas.
So some theorists started rummaging around in the attic, looking for any mathematical tools that might prove useful. And there they found an interesting set of ideas first proposed by Werner Heisenberg, one of the founders of quantum mechanics.
Look, I found a string!
In the early days of quantum mechanics (the first half of the 20th century), it wasn't exactly clear what would be the best mathematical approach to explain all that weirdness. In the 1930s, Heisenberg suggested a rather extreme idea: instead of taking the normal classical physics approach of 1) write down the starting positions of all the particles involved in an interaction, 2) have a model of that interaction, and 3) follow the evolution through time of those particles, using your model to predict a result.
Instead, he argued, why don't we just skip all that work and develop a machine, called the scattering matrix, or smatrix, that immediately jumps from the initial state to the final state, which is what we really want to measure. That machine encodes all the interaction in a giant box without actually worrying about the evolution of the system.
It was a cool idea but proved too difficult for anybody to get excited about, and it died on the vine — until physicists got desperate in the '60s.
Reviving this approach to the newfound strong nuclear force, theorists extended and developed the smatrix idea, finding that certain mathematical functions that repeated themselves were especially powerful.
Other theoretical physicists dived in, and couldn't resist the urge to give the framework a traditional interpretation in terms of time and space and following the evolution of particles. And there they found something surprising: in order to describe the strong force, it had to be carried by tiny, vibrating strings.
Faster than a speeding photon
These strings appeared to be the basic building block of the strong force, with their quantum mechanical vibrations determining their properties in the microscopic world — in other words, their vibrations made them look and act like tiny little particles.
In the end, this early version of string theory, known as baryonic string theory for the kinds of particles it tried to explain, didn't quite cut the mustard. It was fiendishly difficult to work with, making predictions nearly impossible. It also required the existence of particles that travel faster than the speed of light, called tachyons. That was a major problem for early string theory, since tachyons don't exist, and if they did they would flagrantly violate the incredibly successful special theory of relativity.
Oh, did I mention that baryonic string theory required 26 dimensions to make sense mathematically? That was a pretty big pill to swallow, considering that the universe has only four dimensions.
Ultimately, baryonic string theory died for two reasons. First, it made predictions that disagreed with experiments. That's a big nono. And second, an alternative theory of the strong force, involving a new hypothetical particle called the quark and a force carrier called the gluon, was able to be folded into the quantum framework and successfully make predictions. This new theory, called quantum chromodynamics, or QCD, today remains our theory of the strong nuclear force.
And as for string theory, it mostly faded into the background. It would be revived in the 1970s, once theorists realized that it could describe more than the strong force and after they found a way to get rid of the tachyon predictions in the theory. The theory still needed extra dimensions, but physicists were able to reduce the number to a more reasonablesounding 10. And with the realization that those dimensions could be tiny and curled up below the scale at which we could directly observe it, string theory didn't seem to wacky after all.
And today, that string theory also remains, still attempting to explain the strong force — and so much more.
Learn more by listening to the episode "Is String Theory Worth It? (Part 2: Tuning the Strings)" on the Ask A Spaceman podcast, available on iTunes and on the Web at http://www.askaspaceman.com. Thanks to John C., Zachary H., @edit_room, Matthew Y., Christopher L., Krizna W., Sayan P., Neha S., Zachary H., Joyce S., Mauricio M., @shrenicshah, Panos T., Dhruv R., Maria A., Ter B., oiSnowy, Evan T., Dan M., Jon T., @twblanchard, Aurie, Christopher M., @unplugged_wire, Giacomo S., Gully F. for the questions that led to this piece! Ask your own question on Twitter using #AskASpaceman or by following Paul @PaulMattSutter and facebook.com/PaulMattSutter.
Follow us on Twitter @Spacedotcom and on Facebook.
Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.
Get the Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute in New York City. Paul received his PhD in Physics from the University of Illinois at UrbanaChampaign in 2011, and spent three years at the Paris Institute of Astrophysics, followed by a research fellowship in Trieste, Italy, His research focuses on many diverse topics, from the emptiest regions of the universe to the earliest moments of the Big Bang to the hunt for the first stars. As an "Agent to the Stars," Paul has passionately engaged the public in science outreach for several years. He is the host of the popular "Ask a Spaceman!" podcast, author of "Your Place in the Universe" and "How to Die in Space" and he frequently appears on TV — including on The Weather Channel, for which he serves as Official Space Specialist.

rod Admin said:String theory is a powerful idea, unfinished and untested, but one that has persisted for decades despite inauspicious beginnings.
Why string theory persists — despite the knotty physics : Read more
I enjoyed reading this report. A note here from what was said "And as for string theory, it mostly faded into the background. It would be revived in the 1970s, once theorists realized that it could describe more than the strong force and after they found a way to get rid of the tachyon predictions in the theory. The theory still needed extra dimensions, but physicists were able to reduce the number to a more reasonablesounding 10. And with the realization that those dimensions could be tiny and curled up below the scale at which we could directly observe it, string theory didn't seem to wacky after all. And today, that string theory also remains, still attempting to explain the strong force — and so much more."
My note, here we see 10 extra dimensions vs. the 4 in Special Relativity that was discussed. However, there is another recent report on string theory that shows there could be 1E+200 extra dimensions, The Universe May Be Flooded with a Cobweb Network of Invisible Strings
This report concerned axions. 
William Pennat It also required the existence of particles that travel faster than the speed of light, called tachyons. That was a major problem for early string theory, since tachyons don't exist, and if they did they would flagrantly violate the incredibly successful special theory of relativity.  Quote from articleReply
Actually, tachyons don't violate Special Relativity (exactly). Special Relativity only says that nothing with mass can travel AT the speed of light because mass increases with speed and becomes infinite at the speed of light. But the only thing possibly preventing objects with mass from traveling faster than light (once they somehow get to such a speed) is the fact that mass then becomes mathematically imaginary. And whether "imaginary mass" is physically possible or not is a whole different question. It's hard to know what it would be like or even measurable. But tachyons (if they exist) would have imaginary mass, which could account for why they've never been detected. This might also be a case where the ordinary sense of "imaginary" and the mathematical sense of "imaginary" (square root of a negative number) combine!... 
Outcast If ya gimmee six or eight extra dimensions for wiggle room, and everybody promises to never ever look at them....I could also be a smart SOB....Reply 
LMAJdS William Pennat said:It also required the existence of particles that travel faster than the speed of light, called tachyons. That was a major problem for early string theory, since tachyons don't exist, and if they did they would flagrantly violate the incredibly successful special theory of relativity.  Quote from article
Actually, tachyons don't violate Special Relativity (exactly). Special Relativity only says that nothing with mass can travel AT the speed of light because mass increases with speed and becomes infinite at the speed of light. But the only thing possibly preventing objects with mass from traveling faster than light (once they somehow get to such a speed) is the fact that mass then becomes mathematically imaginary. And whether "imaginary mass" is physically possible or not is a whole different question. It's hard to know what it would be like or even measurable. But tachyons (if they exist) would have imaginary mass, which could account for why they've never been detected. This might also be a case where the ordinary sense of "imaginary" and the mathematical sense of "imaginary" (square root of a negative number) combine!...
The question of the speed of light as being a limiting speed could be opened.
The decision by BIPM (Bureau international des Poids et des Mesures) to make it a constant of nature might be a little premature.
It has not been measured everywhere in outer space.
Forcing the speed of light to be a constant of nature might introduce unnecessary hardships on
space geometry modelling.
The problem is that nobody is going to measure the speed of light anymore since it is being declared
a constant.
If it is not really a universal constant then it introduces all sorts of complication in experimental and theoretical physics. 
rod There is the fine structure constant that plays a critical role here about velocity of c in stellar spectrums. New Quasar Studies Keep Fundamental Physical Constant ConstantReply 
ross beukes
yeah, you're right...the speed of light has been treated as a constant since Einstein deemed it to be. but he didn't take into account the existence of ultrahighenergy gamma rays, as they were confirmed in 2019, and their existence on the spectrum, makes it a possibility that the speed of light is actually relative to the photons frequency...maybe? of course the higher spectrum gamma now being confirmed messes with the whole theory of relativity and makes my physics classes all the more complicated😅😂LMAJdS said:The question of the speed of light as being a limiting speed could be opened.
The decision by BIPM (Bureau international des Poids et des Mesures) to make it a constant of nature might be a little premature.
It has not been measured everywhere in outer space.
Forcing the speed of light to be a constant of nature might introduce unnecessary hardships on
space geometry modelling.
The problem is that nobody is going to measure the speed of light anymore since it is being declared
a constant.
If it is not really a universal constant then it introduces all sorts of complication in experimental and theoretical physics. 
Atlan0001 Why is there insistence that we can know all there is to know about the universe from the myopic gravitational well and scope of Earth, even up to including just our solar system (still a look and a perception from a localized insular hole in the universe)? We will not know more than a fragmentary bit  a distorted fragmentary bit  about the universe until we've literally reached in physical travel farther and ever farther out into it away from our isolated microscopic island in it.Reply
No matter the physics of the greater universe, the universe brought to the observer down a funneling scope can never be any kind of universe but a wholly closed systemic universe. A radical premise. 
Atlan0001 Cosmologists Close In on Logical Laws for the Big Bang  Quanta MagazineReply
I give 'time' two dimensional constants and a third dimension of encapsulated . Altogether, a 'tristate' dimensionality out of a binary base dimensionality.
Background or 'Infinity' constant, (t=1).
Foreground or 'Now' constant, (t=0).
('Unitary': "Having the character of a unit : an undivided whole")
The , as I see it, is dimensionally "unitary," binary, time constant, Infinity (t='1') and/or Now (t='0') ... and place constant, (c='1' (infinity ((+/)300.000kps)) and/or c='0' ('uncertainty')). 
Atlan0001 When Albert Einstein took his mind trip up to the speed of light, it was to a one way destination (+300,000kps (closed systemically)). Standing by the railroad track, all his observer ever observed was positive (+) velocity to his stand by the railroad track. But to the universe that stand by the railroad track is strictly relative . . . the observer in that inertial rest frame is in no way standing still with regard to the universe, nor is the ground he stands upon inertially at rest as far as the universe is concerned. There is velocity in the universe negative to his zero of velocity in his inertial rest frame. Negative velocity all the way to (300,000kps (closed systemically)).Reply
Einstein at +300,000kps is infinite in mass, sort of infinite in all spacetime. Einstein at 300,000kps is, therefore, infinitesimal in mass, sort of infinitesimal in all spacetime. He possibly contracted the closed system universe absolutely one way, he possibly expands the closed system universe absolutely the other. Except to finite, to relativity, though, there is no real difference between infinitesimal and infinite. They are both infinite, and infinity. But to "finite", to "relativity," he did no more than move universe plane to universe plane, relativity to relativity, uncertainty to uncertainty, in both directions (infinity = '1' (constant)). That is, providing he survived the closed systemic gravitationallike acceleration up and out into the then apparently contracting universe around him, one way, and deceleration down and in into the then apparently expanding universe around him, the other way.
But the very concept of a negative of spacetime in the negative of velocity (a velocity negative to Einstein's observer on Earth) all the way to a potentially negative speed of light value (300,000kps)  the duality existing ((+/) 300,000kps) then infinitizing the speed of light may have some sort of kinship to other possible negative entities and dimensionalities:
PowerPoint Presentation (nasa.gov)
It's a Multiverse Universe.
Most Popular
By Jeff Spry