Jupiter's 10 most massive mysteries

montage New Horizons images of Jupiter and Io
Jupiter and its moons, like Io (shown in front), have many mysteries despite decades of studies. (Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Goddard Space Flight Center)

All hail the king of planets and its many mysteries.

Jupiter is the most massive planet in our solar system and it's easy enough to spot with the naked eye. While big telescopes can get a good look at the gas giant planet, bringing a spacecraft within reach provides a close-up view.

Numerous spacecraft orbited or flew by Jupiter in the past five decades. The first were Pioneer 10 and Pioneer 11 in 1972 and 1973, respectively, followed by twin flybys by Voyager 1 and Voyager 2 in 1977. Other prominent missions include the Galileo spacecraft (orbiting between 1995 and 2003) and most recently, NASA's Juno (2011-2022).

Based on a past interview with Juno principal investigator Scott Bolton and information from the European Space Agency (ESA), here are 10 mysteries we have about Jupiter that may be solved with more study. Luckily, two more missions will head out that way very soon: NASA's Europa Clipper that launches no earlier than 2024, and ESA's Jupiter Icy Moons Explorer (JUICE) scheduled to lift off in 2023 or so.

In Photos: Juno's amazing views of Jupiter

How did Jupiter get enriched in heavy elements, compared with the sun?

Powerful storms around the north pole of Jupiter captured by NASA's Juno mission. (Image credit: NASA/JPL-Caltech/SwRI/MSSS Image processing by Brian Swift)

Jupiter is 317 times more massive than the Earth, making it a real heavyweight in the solar system. It is believed that the planets in the solar system formed from the same hydrogen-helium cloud from which the sun was created. But here's the catch: The Galileo probe, which looked at Jupiter in the 1990s and 2000s, found a different abundance of heavy elements in Jupiter than in the sun.

One theory (proposed at the time by Galileo scientists) is that Jupiter's heavy elements come from the numerous comets, asteroids and other small bodies that it has pulled in and "consumed" when they get too close. But scientists aren't quite sure.  Alternatively, a newer study based on Juno data suggests Jupiter may have formed four times farther away from the sun than the gas giant's orbit, which may explain the strange abundance.

Related: This jaw-dropping Jupiter photo is a photographer's sharpest ever and made of 600,000 images

2. What is the global abundance of water in Jupiter?

The distribution of water in Jupiter's stratosphere as seen by the Herschel Space Telescope. (Image credit: Water map: ESA/Herschel/T. Cavalié et al.; Jupiter image: NASA/ESA/Reta Beebe (New Mexico State University))

Water is key to understanding how Jupiter was formed. Water ice hitchhiking on early comets or asteroids brought heavier elements to Jupiter besides the original hydrogen and helium floating around in the solar system, according to the Southwest Research Institute

A surprising recent finding is just how persistent water can be after a comet crashes into Jupiter. A famous comet called Shoemaker-Levy 9 broke up into pieces before peppering the planet in July 1994. About 20 years later, the Herschel Space Observatory detected an abundance of water in Jupiter's stratosphere that came from Shoemaker-Levy 9 (which was clear because most of the water vapor was around the impact sites).

At least one Juno study found a surprising amount of water in Jupiter compared to what models suggested. Water may make up about 0.25% of the atmospheric molecules over Jupiter's equator, much higher than previous measurements from Galileo. Figuring out why the two spacecraft have different estimates is key to better determine the recipe for planet formation, NASA officials said at the time.

In photos: 10 extraordinary ocean worlds in our solar system

3. What is the nature of Jupiter's core?

This view of Jupiter’s south pole was created using data from NASA’s Juno spacecraft. (Image credit: NASA/JPL-Caltech/SwRI/MSSS/Gabriel Fiset)

The physics of Jupiter are hard for even space scientists to imagine. Jupiter is made up of 90 percent hydrogen, which exists in the outer layers as gas (just like on Earth). Deeper inside the planet, however, the hydrogen is under so much pressure that the electrons are squeezed out, creating a fluid that conducts electricity like a metal, according to a 2011 NASA feature story.

This process creates a huge magnetic field within the planet, which is also strengthened by Jupiter's rapid rotation. Auroras shine brighter on Jupiter than anywhere else in the solar system. At the core of Jupiter, however, the composition is anyone's guess. No one is sure how far the liquid hydrogen layer penetrates and if the core has heavier elements inside. 

Juno aims to figure out more about Jupiter's insides by examining the planet's atmosphere, gravity and magnetic field. Its work suggests that Jupiter may have a "fuzzy" core, "much larger than anyone had anticipated," Bolden said in a 2018 press conference.

Related: What is Jupiter made of?

4. How deep do the zones, belts and storm features, such as the Red Spot, go?

A flake of red peels away from Jupiter’s Great Red Spot during an encounter with a smaller anticyclone, as seen by the Juno spacecraft’s high resolution JunoCam on 12 February 2019. Although the collisions appear violent, planetary scientists believe they are mostly surface effects. (Image credit: AGU/Journal of Geophysical Research: Planets)

Images of Jupiter show thick stripes and swirling storms, but most of these pictures capture only the tops of the clouds that cover the giant planet. It's unclear what the weather is like deeper down, inside Jupiter, and whether the features  that can be seen on the surface are present below. Juno observations suggest that is indeed the case, and that the bands, storms and other surface weather we can see may persist for thousands of miles (or kilometers) into the massive gas giant planet, and is going deeper than what the spacecraft is capable of seeing. 

Understanding the long-term weather on Jupiter will also help scientists solve mysteries such as why its Great Red Spot is shrinking. This storm feature has been known to astronomers ever since telescopes were first available in the early 1600s. Once estimated as large enough to fit three Earths across its width, the storm is now no bigger than Earth's diameter.

In photos: The Great Red Spot: The solar system's biggest storm

5. How does the interior of Jupiter rotate?

NASA’s Juno spacecraft imaged Jupiter and Ganymede during the mission’s 40th close pass by the giant planet on Feb. 25, 2022. (Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Thomas Thomopoulos © CC BY­­)

When you look at the exterior of Jupiter, you can see that the zones and bands don't move in concert with each other. There are changes in their rotation and sizes from night to night, changes that are even apparent in amateur telescopes.

Deeper down in Jupiter's atmosphere, what is happening is even less understood. To date, planetary probes have mostly been looking at the surface of the giant planet. Juno's work suggests that the interior may in fact move as a "nearly rigid body", according to NASA, which is opposite to how one would expect gases to behave. 

Figuring out the transition between the surface, fluid weather into this zone will be a task for Juno in its final years, as the interior of Jupiter may be indicative of the structure at Saturn and other gas giants.

Related: Jupiter's atmosphere, composition and the Great Red Spot

6. How and where does the magnetic field originate?

Artist's impression of the aurora on Jupiter, and its magnetosphere. (Image credit: JAXA)

The magnetic fields found around planets like Earth are thought to be caused by the flow of liquids within the core (in the case of Earth, the fluid is iron). Things are more complicated on Jupiter, however. 

The planet has liquid hydrogen closer to its center that would also conduct, much like a metal, but findings from Juno suggest the interior has a vast asymmetry between the northern and southern hemispheres; why is open to interpretation. Meanwhile, alternating currents of magnetism deep within Jupiter may be driving forceful auroras visible high in the atmosphere.  

Figuring out what is happening in Jupiter could not only help us understand magnetism in giant planets in our own solar system, but could also help scientists make predictions about planets outside the solar system. Jupiter is considered a model for exoplanet studies, although there are very weird Jupiter-size planets out there. For example, some orbit very close to their parent stars

Related: Behold this fantastic 3D animation of Jupiter's frosting-like clouds

7. What drives the aurora in Jupiter?

X-ray auroras on Jupiter, seen by the Chandra X-Ray Observatory, are overlaid here on an optical image from the Hubble Space Telescope taken at the same time. (Image credit: X-ray: NASA/CXC/SwRI/R.Gladstone et al.; Optical: NASA/ESA/Hubble Heritage)

Jupiter's auroras were first spotted when the Voyager 1 spacecraft flew by in 1979. When astronomers later turned X-ray telescopes toward the planet, however, they saw much more power than anticipated. Auroras are so frequent on Jupiter, in fact, that in a 2007 news release astronomers said they see the auroras every time they look at the giant planet.

The process for generating these fields, however, is poorly understood, NASA added in the same  release. Scientists know that Jupiter has enough spin to produce its own auroras (unlike the Earth, which relies fully on solar activity). They also know the auroras come from charged particles, mainly (in Jupiter's case) from volcanic plumes on the moon Io. But it's unclear how the particles make their way from Io to Jupiter's magnetosphere. 

Closer study will be required by the Juno spacecraft, but great progress has already been made: X-ray flares using Io's particles in the atmosphere are generated by vibrations in Jupiter's magnetic field lines, which release plasma that in turn release energy in the form of X-rays.

Related: Auroras, lightning and gings of Jupiter amaze in surprising NASA Juno photos

8. Could there be life in Jupiter's system?

A highly stylized view of Jupiter's icy moon Europa created by reprocessing an image captured by JunoCam during the mission's close flyby on Sept. 29. (Image credit: NASA/JPL-Caltech/SwRI/MSSS. Image processing: Kevin M. Gill / Fernando Garcia Navarro)

While Jupiter is likely too hostile for life as we know it, its moons might be a different matter. The gas giant is surrounded by numerous icy moons, the largest and most famous being Europa, Ganymede and Callisto. It may be that these worlds, which likely host oceans, include the building blocks of life within them.

JUICE will target several of these moons in its orbits, while Europa Clipper will largely (but not exclusively) examine Europa. The hope is these spacecraft will study the moons' potential for life, along with their "hidden oceans, magnetism, heating processes, tidal effects, orbits, surface activity, cores and compositions, atmospheres and space environments," ESA states.

Related: Contact with ET: How would humanity react?

9. How has Jupiter’s complex environment shaped its moons, and vice versa?

From left, the Jovian moons Io, Europa and Ganymede based on Juno spacecraft data. (Image credit: NASA / SwRI / MSSS / Alessandro G. Ceretti © CC BY)

Juno continues to boggle the mind with the findings about Jupiter's gravity, interior and atmosphere. As you can see from the findings already presented, the spacecraft often contradicted past results or took science in a completely separate direction. Armed with this information, we can now turn to the moons to get a greater sense of how Jupiter's strangeness changes and shapes the moons it hosts.

Some of the mysteries requiring more examination here include better understanding how high-energy particles flow around moons like Io, the nature of the moons' auroras, and how the magnetic field of Jupiter (which extends around its moons) is shaped by the solar wind in different zones around the planet, among many others outlined by ESA

The moons also shape each other, through orbital resonances and stirring up tides on each other, which adds further complexity to an already otherworldly system.

Related: Jupiter's weird magnetic field gets even weirder

10. How do gas giants usually form and evolve?

Jupiter and its moon Europa, left, are seen through the James Webb Space Telescope’s NIRCam instrument 2.12 micron filter. (Image credit: NASA, ESA, CSA, and B. Holler and J. Stansberry (STScI))

While each planet is unique, what we are finding on Jupiter may be representative of other planets inside and outside of our solar system, especially bigger ones. Scientists are currently cataloging a range of incredible worlds, many of which are a few times larger than Jupiter and which have a new tool to look at them: the James Webb Space Telescope.

Webb has sharp infrared imaging available and one of its larger goals is to catalog planetary atmospheres to better understand what they are made of, and how they may change over time. The studies closer up at Jupiter help to inform what scientists are seeing further out, to improve their models of how planets form, evolve and continue changing in different kinds of planetary systems. 

Related: 10 amazing exoplanet discoveries

References

European Space Agency. (2022, March 23.) Exploring the secrets of Jupiter: Top five mysteries JUICE will solve. https://www.esa.int/Science_Exploration/Space_Science/Juice/Exploring_the_secrets_of_Jupiter_Top_five_mysteries_Juice_will_solve 

Moore, Kimberly M. et. al. (2018, Sept. 5). A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature 561, no. 76-78. https://www.nature.com/articles/s41586-018-0468-5 

Mura, A. et. al. (2021, July 3). "Oscillations and stability of Jupiter polar cyclones. Geophysical Research Letters 48, no. 14. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL094235 

NASA. (2011, Aug. 9). A freaky fluid inside Jupiter? https://science.nasa.gov/science-news/science-at-nasa/2011/09aug_juno3/ 

NASA. (2018, March 7.) NASA Juno findings: Jupiter's jet-streams are unearthly. https://www.nasa.gov/feature/jpl/nasa-juno-findings-jupiter-s-jet-streams-are-unearthly 

NASA. (2020, Feb. 20). "Findings from NASA's Juno update Jupiter water mystery." https://www.nasa.gov/feature/jpl/findings-from-nasas-juno-update-jupiter-water-mystery 

Southwest Research Institute. (2022.) Mission Juno. https://www.missionjuno.swri.edu

Yao, Zhonghua et. al. (2021, July 9.) "Revealing the source of Jupiter’s x-ray auroral flares." Science Advances 7, no. 28. https://www.science.org/doi/10.1126/sciadv.abf0851  

Elizabeth Howell is the co-author of "Why Am I Taller?" (ECW Press, 2022; with Canadian astronaut Dave Williams), a book about space medicine. Follow her on Twitter @howellspace. Follow us on Twitter @Spacedotcom or Facebook.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Elizabeth Howell
Former Staff Writer, Spaceflight (July 2022-November 2024)

Elizabeth Howell (she/her), Ph.D., was a staff writer in the spaceflight channel between 2022 and 2024 specializing in Canadian space news. She was contributing writer for Space.com for 10 years from 2012 to 2024. Elizabeth's reporting includes multiple exclusives with the White House, leading world coverage about a lost-and-found space tomato on the International Space Station, witnessing five human spaceflight launches on two continents, flying parabolic, working inside a spacesuit, and participating in a simulated Mars mission. Her latest book, "Why Am I Taller?" (ECW Press, 2022) is co-written with astronaut Dave Williams. 

  • rod
    A very interesting list of 10 here :) I note from the article some points of interest when I read.

    "HOW DID JUPITER GET ENRICHED IN HEAVY ELEMENTS, COMPARED WITH THE SUN?"

    "Jupiter is 317 times more massive than the Earth, making it a real heavyweight in the solar system. It is believed that the planets in the solar system formed from the same hydrogen-helium cloud from which the sun was created. But here's the catch: The Galileo probe, which looked at Jupiter in the 1990s and 2000s, found a different abundance of heavy elements in Jupiter than in the sun." "One theory (proposed at the time by Galileo scientists) is that Jupiter's heavy elements come from the numerous comets, asteroids and other small bodies that it has pulled in and "consumed" when they get too close. But scientists aren't quite sure. Alternatively, a newer study based on Juno data suggests Jupiter may have formed four times farther away from the sun than the gas giant's orbit, which may explain the strange abundance."

    "2. WHAT IS THE GLOBAL ABUNDANCE OF WATER IN JUPITER?"

    "Water is key to understanding how Jupiter was formed. Water ice hitchhiking on early comets or asteroids brought heavier elements to Jupiter besides the original hydrogen and helium floating around in the solar system, according to the Southwest Research Institute(opens in new tab) A surprising recent finding is just how persistent water can be after a comet crashes into Jupiter. A famous comet called Shoemaker-Levy 9 broke up into pieces before peppering the planet in July 1994. About 20 years later, the Herschel Space Observatory detected an abundance of water in Jupiter's stratosphere that came from Shoemaker-Levy 9 (which was clear because most of the water vapor was around the impact sites). At least one Juno study found a surprising amount of water in Jupiter compared to what models suggested..."

    "10. HOW DO GAS GIANTS USUALLY FORM AND EVOLVE?"

    "While each planet is unique, what we are finding on Jupiter may be representative of other planets inside and outside of our solar system, especially bigger ones. Scientists are currently cataloging a range of incredible worlds, many of which are a few times larger than Jupiter and which have a new tool to look at them: the James Webb Space Telescope."

    Some of these 10 are tied up with the origin of Jupiter and the MMSN used to describe the origin of our solar system. Here is a report from 1977 that I use as a baseline to compare with more modern simulations and reports.

    The Distribution of Mass in the Planetary System and Solar Nebula, The Distribution of Mass in the Planetary System and Solar Nebula - NASA/ADS (harvard.edu) September 1977.

    1977Ap&SS..51..153W (harvard.edu), this 6-page report shows how much mass is used in the MMSN to explain the origin of Jupiter and our solar system. Some 600-12,000 earth masses used for Jupiter. What happens in more recent computer simulation reports here? It appears that much juggling of initial mass values and chemistry estimates are always underway to show how Jupiter and our solar system evolved from the solar nebula and postulated protoplanetary disc. The list of 10 in this article indicates there are problems with the entire solar nebula model currently used to explain the origin of Jupiter. In our solar system we do not find hot jupiters or very large exoplanets buzzing around the Sun in the region 3 au or closer. I enjoyed reading this report and list of 10 :)
    Reply
  • rod
    Concerning the first item of the list of 10 in the report, I note this Feb-2020 report on Jupiter's heavy element abundance in the MMSN.


    Jupiter's heavy-element enrichment expected from formation models, https://ui.adsabs.harvard.edu/abs/2020A%26A...634A..31V/abstract
    Reference paper, https://arxiv.org/pdf/1911.12767.pdf, 18-pages, 02-Dec-2019.

    The paper reports, "The exact formation process of Jupiter is not fully constrained and it is unknown whether the early stages of the planet’s formation are dominated by pebble accretion, planetesimal accretion, or both, as recently suggested by A18. In the hybrid formation scenario of A18, there are three formations stages:”..Therefore, if we assume that Jupiter consists of 20-40 M⊕ of heavy elements as suggested by standard structure models, it implies that after attaining the initial core (∼5-15 M⊕), Jupiter spent most of its time between ∼1-10 au (being 1 and 10 au unlikely locations). Formation locations ranging between a = 3 and 5 au provide a very good match with Jupiter’s current bulk metallicity and with the meteoritic constraints of K17; for a wide range of the assumed Σ1, ranging from two to ten times the MMSN. For Σ1 corresponding to one MMSN, the metallicity of the forming Jupiter is too low and the meteoritic constraints cannot be matched. This suggests that in our scenario, Jupiter’s formation requires a "minimum planetesimal disk" corresponding to at least two times the MMSN..."
    Reply
  • billslugg
    " About 20 years later, the Herschel Space Observatory detected an abundance of water in Jupiter's stratosphere that came from Shoemaker-Levy 9 (which was clear because most of the water vapor was around the impact sites)."

    I find it hard to believe that after 20 years, the water from the comet impact was not mixed better. Don't all the different bands shift around at different rates? How can we fix a longitude on a planet with no solid surface?
    Reply
  • rod
    billslugg said:
    " About 20 years later, the Herschel Space Observatory detected an abundance of water in Jupiter's stratosphere that came from Shoemaker-Levy 9 (which was clear because most of the water vapor was around the impact sites)."

    I find it hard to believe that after 20 years, the water from the comet impact was not mixed better. Don't all the different bands shift around at different rates? How can we fix a longitude on a planet with no solid surface?
    Follow that Great Red Spot, I did some tonight :)
    Reply
  • rod
    billslugg, Jupiter has a coordinate system used, Juno used a special type. Wikipedia has reports on planet coordinate systems used in our solar system, especially for Mars, Venus, and Mercury. The Sun has a solar coordinate system too for those who do solar observations and record sunspot locations. The Moon has a coordinate system too. You can use Virtual Moon Atlas and apply grid views along with other lat-long lines. Your question is a good one, the Sun has no solid surface, but the solar coordinate system is used. There is much info on the coordinate systems, I am no expert. I enjoy using them at times with my telescope views. Tonight, was a good example on the Moon, Jupiter Great Red Spot view, and Mars with Syrtis Major area. See report on the First Quarter Moon for this evening by space.com. https://forums.space.com/threads/see-the-final-first-quarter-moon-of-2022-join-jupiter-in-the-sky-tonight-dec-29.59381/
    Reply
  • billslugg
    I read there are three coordinate systems used on Jupiter. One for equatorial latitudes, one just above and below that. A third is based on the magnetic field.
    Reply