This image combines data from four different space telescopes to create a multi-wavelength view of all that remains of the oldest documented example of a supernova, called RCW 86. The Chinese witnessed the event in 185 A.D., documenting a mysterious "guest star" that remained in the sky for eight months.
The arrow marks PTF 11kly in images taken on the Palomar 48-inch telescope over the nights of, from left to right, Aug. 22, 23 and 24. The supernova wasn't there Aug. 22, was discovered Aug. 23, and brightened considerably by Aug. 24.
This image comes from a very deep Chandra observation of the Tycho supernova remnant. Low-energy X-rays (red) in the image show expanding debris from the supernova explosion and high energy X-rays (blue) show the blast wave, a shell of extremely energetic electrons. These high-energy X-rays show a pattern of X-ray "stripes" never previously seen in a supernova remant.
This astrophysics simulation seeks to discover the mechanism behind core-collapse supernovae, or the violent death of short-lived, massive stars. The image shows entropy values in the core of the supernova, different colors and transparencies assigned to different values of entropy. By selectively adjusting the color and transparency, the scientist can peel away outer layers and see values in the interior of the 3-D volume.
This image presents a composite of X-rays from Chandra (red, green, and blue) and optical data from Hubble (gold) of Cassiopeia A, the remains of a massive star that exploded in a supernova. Inset: A cutout of the interior of the neutron star, where densities increase from the crust (orange) to the core (red) and finally to the region where the "superfluid" exists (inner red ball).
This composite image shows a supernova within the galaxy M100 that may contain the youngest known black hole in our cosmic neighborhood. The black hole would be about 30 years old and was born from the supernova SN1976C.
While searching the skies for black holes using the Spitzer Space Telescope Deep Wide Field Survey, Ohio State University astronomers discovered a giant supernova that was smothered in its own dust. In this artist's rendering, an outer shell of gas and dust — which erupted from the star hundreds of years ago — obscures the supernova within. This event in a distant galaxy hints at one possible future for the brightest star system in our own Milky Way.
This false-color image of Kepler’s supernova remnant combines data taken in X-rays (Chandra X-ray Observatory), visible light (Hubble Space Telescope) and infrared radiation (Spitzer Space Telescope). Nicolas Dauphas, from the University of Chicago, and his colleagues have been analyzing meteorites for the microscopic remnants of a supernova that exploded approximately 4.5 billion years ago.
The combined image from the Chandra and XMM-Newton X-ray observatories of RCW 86 shows the expanding ring of debris created after a supernova.
An infrared image of the portion of the Small Magellanic Cloud containing supernova remnant E0102, plus a composite X-ray, optical and infrared image of E0102.
This image shows the aftermath of a 2,000-year-old star explosion. In the heart of the central blue dot in this image, smaller than a pinpoint, likely lies a neutron star only about 20 kilometers across. The nature of this object is like nothing detected before.
The supernova SN 2001ig (inset) sits in the outer fringes of the galaxy NGC 7424, seen here in an image taken by the Gemini South Telescope in the constellation Grus.
This image of SN 1987A combines data from NASA's orbiting Chandra X-ray Observatory and the 8-meter Gemini South infrared telescope in Chile. The X-ray light detected by Chandra is colored blue. The infrared light detected by Gemini South is shown as green and red. The ring is produced by hot gas (largely the X-ray light) and cold dust (largely the infrared light) from the exploded star interacting with the interstellar region.
A Chandra X-ray Observatory image of the supernova remnant Cassiopeia A, with an artist's impression of the neutron star at the center of the remnant. The discovery of a carbon atmosphere on this neutron star resolves a ten-year old mystery surrounding this object.
The Chandra image in the inset shows X-rays from SN 1970G, a supernova that was observed to occur in the galaxy M101 35 years ago. The bright cloud in the box in the optical image is not related to the supernova, which is located immediately to the upper right (arrow) of the cloud.
The remnant of supernova 1987A shows no sign of the neutron star scientists believe is lurking at its heart. The Hubble Space Telescope took this image in December 2004.
A ten-year-old amateur astronomer became the youngest person to have ever discovered a supernova, after detecting a stellar explosion in the galaxy UGC 3378 within the constellation of Camelopardalis.
A team of astronomers led by the University of Colorado at Boulder are charting the interactions between Supernova 1987A and a glowing gas ring encircling the supernova remnant known as the “String of Pearls.”
This annotated image from the Chandra X-Ray Observatory shows N49, the aftermath of a supernova in the Large Magellanic Cloud, and a bullet-like object ejected from the huge star explosion. Full Story.
A new image from NASA's Chandra X-ray Observatory and Spitzer Space Telescope shows the dusty remains of a collapsed star. The composite image of G54.1+0.3 shows X-rays from Chandra in blue, and data from Spitzer in green (shorter wavelength infrared) and red-yellow (longer wavelength infrared). Scientists think that a pulsar (the white source in the center) is sending off a wind that is heating up remnant supernova dust.
The shapes of supernova leftovers can tell scientists the origin of this explosion, with Type 1a supernova from thermonuclear explosions leaving behind symmetric remnants (right). And supernova created when a massive star collapses tend to leave behind asymmetrical remnants (left).
This composite image of X-ray and optical data shows the remnant of supernova 1E 0102.2-7219, about 190,000 light-years away in the Small Magellanic Cloud.
Time-series images made by cameras onboard the Hubble Space Telescope show the evolution of the inner remnant of Supernova 1987A.