Powerful JPSS-2 weather satellite launches with Mars heat shield test on final Atlas V flight from West Coast

Update for 8 p.m. EST on Nov. 10: The JPSS-2 satellite initially had difficulty deploying its solar arrays after reaching orbit. But that problem has been solved, and the spacecraft is now "healthy and operating as expected," NASA officials wrote in an update on Thursday evening (Nov. 10). 

The Atlas V rocket's West Coast work is done.

United Launch Alliance's (ULA) workhorse rocket lifted off today (Nov. 10) from California's Vandenberg Space Force Base at 4:49 a.m. EST (0949 GMT; 1:49 a.m. local California time), carrying two payloads toward Earth orbit. 

The Atlas V rocket lifted off with a 24-minute delay due to issues with fueling, which forced the ground control team to briefly halt the countdown. After liftoff, the Joint Polar Satellite System-2 (JPSS-2), separated flawlessly from the rocket's Centaur upper stage about 28 minutes into the flight. 

Shortly after launch, NASA began working on a potential telemetry glitch as they had not confirmed if the satellite's solar array deployed as expected. "Mission managers for NOAA's JPSS-2 confirm the satellite has acquired signal and is receiving and responding to commands. The satellite is currently power positive (getting electricity) and in a safe and stable configuration while teams assess the status of the solar array.," NASA wrote after launch.

JPSS-2, owned by the U.S. National Oceanic and Atmospheric Administration, will gather a variety of weather and climate data once it's up and running. The second spacecraft, an inflatable heat shield technology demonstrator called LOFTID, could help NASA land super-heavy payloads on Mars down the road. 

Related: Powerful new Earth-monitoring satellite JPSS-2 to study weather's 'butterfly effect'

The United Launch Alliance Atlas V rocket lifting of from Vandenberg Space Force Base on November 10, 2022 carrying the JPSS-2 weather satellite for NOAA and NASA. (Image credit: ULA)

The Atlas V flew today in the rocket's most stripped-down configuration, without any solid rocket boosters. JPSS-2 and LOFTID were also housed in a 13-foot-wide (4 meters) payload fairing, the smallest available for an Atlas V.

The rocket's first-stage RD-180 engine burned for about 4 minutes before a nominal main engine cutoff and first-stage separation, followed by a series of burns from the Atlas V's Centaur upper stage to keep carrying the two payloads aloft. JPSS-2 was deployed about 28 minutes after liftoff into a polar orbit 440 miles (710 kilometers) above Earth. LOFTID is scheduled to deploy into a highly elliptical orbit at T+75 minutes, then head back down for a fiery reentry trial in Earth's atmosphere.

That this was the last Atlas V launch from the West Coast symbolizes a shift ahead for ULA's California launch facilities. Following today's mission, Vandenberg's Space Launch Complex 3-East will begin upgrades to facilitate launches of the company's new Vulcan Centaur rocket, which is expected to debut sometime in the first quarter of 2023. 

Launching a weather powerhouse

Today's mission also represents a shift forward for both payloads' respective technologies. JPSS-2 — a joint effort of NASA and the U.S. National Oceanic and Atmospheric Administration (NOAA) — is essentially a weather satellite, but the rather banal nomenclature doesn't do justice to the spacecraft's capabilities. JPSS-2 is joining two other weather satellites in polar orbit and will be an Earth-monitoring powerhouse. 

The first satellite in the JPSS program, the Suomi-NPP spacecraft, launched in 2011. The second, NOAA-20, followed suit in 2017. (NOAA-20 was known as JPSS-1 until it reached its final orbit.) JPSS-2 is joining them to help scientists collect, and better understand, enormous amounts of meteorological data that will improve global weather models, among other uses.

"NOAA 20, Suomi-NPP, and soon JPSS-2 aid our meteorologists in meeting the National Weather Service mission for all Americans," Jordan Gerth, a meteorologist and satellite scientist for NOAA's National Weather Service, said during a prelaunch press briefing on Tuesday evening (Nov. 8). "First, JPSS data is a major input into U.S. and international global numerical weather prediction modeling systems."

Gerth used a tropical storm as a hypothetical example to explain what kind of data JPSS-2's scientific instruments will gather. 

"The Visible Infrared Imaging Radiometer Suite, or VIIRS instrument, provides imagery at a spatial resolution of 375 meters, or approximately a quarter mile, and enables the detection of thunderstorm features such as overshooting tops," Gerth said. Overshooting tops, he explained, can help determine the severity of a storm. VIIRS can also detect mesospheric gravity waves emanating from the center of tropical systems. 

JPSS-2 is also carrying the Advanced Technology Microwave Sounder (ATMS), which can see through cloud canopies to determine the interior structures of hurricane eye walls. The Cross-track Infrared Sounder (CrIS) aboard the spacecraft will work in tandem with ATMS to convert temperature and moisture data at different elevations into 3D representations for atmospheric models.

In its polar orbit, JPSS-2 will circle the globe 14 times every 24 hours, providing complete coverage of the entire planet twice daily. In addition to its weather work, the satellite, which will be operated by NOAA, is designed to monitor sea ice, ocean color, temperature, and biodiversity shifts, as well as wildfires, floods and even economic recovery efforts in areas affected by natural disasters.

Related: Climate change: Causes and effects

Testing heavy-duty Mars landing tech

JPSS-2 is designed to gather data from orbit for at least seven years. The other payload that went up on the Atlas V today, LOFTID (short for "Low-Earth Orbit Flight Test of an Inflatable Decelerator"), didn't operate for nearly that long.

LOFTID is based on hypersonic inflatable aerodynamic decelerator (HIAD) technology. It tested the capabilities and performance of an expandable heat shield during reentry through a planetary atmosphere. Expandable heat shields have high potential benefits for the future of spaceflight, NASA officials say, potentially allowing much heavier payloads to be landed safely on the surface of Mars than is currently possible. The agency will need such heavy-duty landing tech to build a research outpost on the Red Planet, which it hopes to start doing in the late 2030s or early 2040s.

LOFTID is packed with sensors, which will help mission team members characterize the vehicle's fiery return to Earth. LOFTID likely reached a maximum speed of nearly 18,000 mph (30,000 kph) during that descent, which ended with a parachute-aided splashdown a few hundred miles off the coast of Hawaii about 110 minutes after liftoff today as planned.

"During entry," Joe Del Corso, LOFTID project manager at NASA's Langley Research Center in Virginia, said during Tuesday's briefing, "LOFTID will also be taking a number of measurements across a suite of instruments, including temperatures across the aeroshell, pressures and heat flux on the nose cap, as well as 360-degree video on six video cameras, and IR data from 12 infrared cameras. We'll also be able to get an aerial mapping of temperature from the fiber optics strain sensor, or FOSS, which will be on the nose of the vehicle." 

LOFTID also was designed to eject an additional data core during its fall to Earth.

Though no more Atlas V vehicles will launch from Vandenberg, the rocket isn't ready for retirement yet. There are still a lot of Atlas V missions left on ULA's books, but all of them will fly from Florida's Space Coast.

Editor's note: This story was updated at 3 p.m. EST to include new details on JPSS-2's power status, then again at 8 p.m. EST to note that LOFTID came back to Earth safely as planned.

Follow us on Twitter @Spacedotcom and on Facebook.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Josh Dinner
Writer, Content Manager

Josh Dinner is Space.com's Content Manager. He is a writer and photographer with a passion for science and space exploration, and has been working the space beat since 2016. Josh has covered the evolution of NASA's commercial spaceflight partnerships, from early Dragon and Cygnus cargo missions to the ongoing development and launches of crewed missions from the Space Coast, as well as NASA science missions and more. He also enjoys building 1:144 scale models of rockets and human-flown spacecraft. Find some of Josh's launch photography on Instagram and his website, and follow him on Twitter, where he mostly posts in haiku.