One of astronomy's most famous stellar pairs sports strange structures in the windy zone between the two stars, according to new observations from the European Southern Observatory's Very Large Telescope Interferometer (VLTI).

Eta Carinae is a star system located about 7,500 light-years from Earth in the constellation Carina. The new images, released today (Oct. 19), provide unprecedented detail of the windy area between the two stars, which could help scientists better understand how massive star evolution works.

ESO researchers created this stunning video of Eta Carinae to zoom into the deepest-ever view of the star system. We weaved telescope imagery and a simulation from ESO, NASA and more and set it to music by The Claypool Lennon Delirium (the tune "There Is No Underwear in Space").

A mosaic showing the Carina Nebula (left), which hosts the Eta Carinae star system. Image obtained by the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory. At middle, are the two distinctive lobes of material surrounding Eta Carinae, called the Homunculus Nebula, taken with ESO's Very Large Telescope. The right image zooms in on the two stars for the best-ever new view, using the Very Large Telescope Interferometer.
A mosaic showing the Carina Nebula (left), which hosts the Eta Carinae star system. Image obtained by the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory. At middle, are the two distinctive lobes of material surrounding Eta Carinae, called the Homunculus Nebula, taken with ESO's Very Large Telescope. The right image zooms in on the two stars for the best-ever new view, using the Very Large Telescope Interferometer.
Credit: ESO/G. Weigelt

Our dreams came true, because we can now get extremely sharp images in the infrared," said Gerd Weigelt, a scientific member at the Max Planck Institute for Radio Astronomy who led the research. "The VLTI provides us with a unique opportunity to improve our physical understanding of Eta Carinae and many other key objects." [Eta Carinae: An Explosive Star System in HD Images

Eta Carinae is known for a great eruption that astronomers observed in the 1830s. Much later, scientists determined the larger star had created the eruption by blowing out lots of dust and gas quickly. The explosion is seen in two lobes around the star system, known as the Homunculus Nebula."

The highest-resolution image of the Eta Carinae star system ever made reveals a windy interaction between the system's two large stars.
The highest-resolution image of the Eta Carinae star system ever made reveals a windy interaction between the system's two large stars.
Credit: ESO

The windy zone between the stars reaches temperatures of reaches extremely high temperatures and is bathed in X-ray radiation, according to the new observations, and it is about 1,000 times smaller than its surrounding nebula. This made the region hard to observe with telescopes either in space or on the ground. 

The two lobes of the Homunculus Nebula surrounding the star system Eta Carinae, taken with the NACO near-infrared adaptive optics instrument on ESO's Very Large Telescope.
The two lobes of the Homunculus Nebula surrounding the star system Eta Carinae, taken with the NACO near-infrared adaptive optics instrument on ESO's Very Large Telescope.
Credit: ESO

The VLTI team used three of the observatory's four auxiliary telescopes to create an interferometer, which combines the light from multiple telescopes to look at an object in greater detail. The new observations show a fan-shaped structure between the two stars that's created as the smaller star's wind crashes into denser wind from the larger star.

The Carina Nebula as captured by the VLT Survey Telescope at ESO's Paranal Observatory.
The Carina Nebula as captured by the VLT Survey Telescope at ESO's Paranal Observatory.
Credit: ESO. Acknowledgement: VPHAS+ Consortium/Cambridge Astronomical Survey Unit

Astronomers were also able to measure the velocities of the winds, which will help to create more accurate computer models, the researchers said. 

The work was detailed Oct. 19 in the journal Astronomy & Astrophysics.

Follow Elizabeth Howell @howellspace, or Space.com @Spacedotcom. We're also on Facebook and Google+. Original article on Space.com.