What's up with that rock? China's moon rover finds something strange on the far side.

Rock fragments, including one specimen (circled) targeted for analysis, discovered by the Yutu-2 rover.
Rock fragments, including one specimen (circled) targeted for analysis, discovered by the Yutu-2 rover. (Image credit: CNSA/CLEP/Our Space)

China's Yutu-2 lunar rover has discovered what appear to be relatively young rocks during its recent exploration activities on the lunar far side.

The Chang'e-4 mission's rover imaged the scattered, apparently lighter-colored rocks during lunar day 13 of the mission, in December 2019, according to the Chinese-language 'Our Space' science outreach blog. 

The specimens, which are quite different from those already studied by the rover, could round out the team's insights into the geologic history and evolution of the area, called Von Kármán crater.

Related: China releases huge batch of amazing Chang'e-4 images from moon's far side

Closer inspection of the rocks by the rover team revealed little erosion, which on the moon is caused by micrometeorites and the huge changes in temperature across long lunar days and nights. That anomaly suggests that the fragments are relatively young. Over time, rocks tend to erode into soils.

The relative brightness of the rocks also indicated they may have originated in an area very different to the one Yutu-2 is exploring

Chang'e-4 made a historic, first-ever soft landing on the far side of the moon in January 2019. Von Kármán, a roughly 110-mile-wide (180 kilometers) crater, is around 3.6 billion years old. Lava has flooded it multiple times since its formation, leaving it relatively smooth and dark. The crater itself lies within the South Pole-Aitken Basin, an even more massive and more ancient impact crater.

A rock fragment viewed by a Yutu-2 obstacle-avoidance camera.

A rock fragment viewed by a Yutu-2 obstacle-avoidance camera. (Image credit: CNSA/CLEP/Our Space)

Dan Moriarty, NASA Postdoctoral Program Fellow at the Goddard Space Flight Center in Maryland, said the size, shape and color of the rocks provide clues to their origin.

"Because [the rocks] all look fairly similar in size and shape, it is reasonable to guess that they might all be related," he told Space.com. "Chang'e-4 landed on a volcanic mare, [a] basalt patch, and those volcanic materials are much darker than normal lunar highlands crust. If these rocks are indeed brighter than the soil, it could mean that they are made up of a higher component of bright, highlands crust materials than the surrounding volcanic-rich soils."

Image of the surface of Von Kármán crater from Yutu-2, released in February 2020.

Image of the surface of Von Kármán crater from Yutu-2, released in February 2020. (Image credit: CNSA/CLEP)

Moriarty noted that higher-resolution images of the rock would provide more information. "If the rock has the appearance of many heterogeneous fragments 'welded' together, this would indicate a regolith breccia," which are formed by the immense heat of a meteorite impact, he said. "If the rock appears more coherent, then it might be a primary crustal rock excavated by the impact."

China recently published a huge batch of data and amazing images from the Chang'e-4 lander and Yutu-2 rover. However, the release did not include data from day 13, meaning high-resolution images of these intriguing specimens are not yet public.

Regarding the age of the rocks, Moriarty said that "fresh" is a relative term: In this case, it means that the rocks formed after the major resurfacing events in Von Kármán crater. "So that could be 10-100 million years [ago] or 1-2 billion years. It's really hard to say definitively." 

To learn more, the Yutu-2 team navigated the rover in order to analyze one of the specimens with its Visible and Near-infrared Imaging Spectrometer (VNIS) instrument, which detects light that is scattered or reflected off materials to reveal their makeup.

Because the fragments are small and the lunar terrain is very challenging, the team made careful calculations and fine adjustments in order to get the rocks into the VNIS field of view, according to Our Space. This may account for the relatively short distance Yutu-2 traveled during lunar day 13: 41.3 feet (12.6 meters). Overall, Yutu-2 has driven 1,170 feet (357 m) since arriving in Von Kármán crater.

Yutu-2 looks back over tracks it made in the lunar soil.

Yutu-2 looks back over tracks it made in the lunar soil. (Image credit: CNSA/CLEP)

Earlier in 2019, Yutu-2 made numerous approaches to an unidentified rock sample, which Our Space described as "gel-like."

The Chang'e-4 lander and Yutu-2 completed their 14th lunar day of science and exploration on Jan. 31, ahead of sunset over the landing area in Von Kármán crater. Day 15 began on Feb. 17, with Yutu-2 due to head to the northwest and then southwest to reach a designated target point.

China plans to launch Chang'e-5, a sample-return mission, in the second half of this year. It will collect around 4 lbs. (2 kilograms) of samples from Oceanus Procellarum on the moon's near side before returning to Earth. If this is successful, the backup Chang'e-6 mission could attempt to retrieve samples from the South Pole-Aitken Basin or the lunar south pole around 2023.

Follow Andrew Jones at @AJ_FI. Follow us on Twitter @Spacedotcom and on Facebook.

OFFER: Save at least 56% with our latest magazine deal!

<a href="https://myfavouritemagazines.pxf.io/c/221109/583111/9620?subId1=hawk-custom-tracking&sharedId=hawk&u=https%3A%2F%2Fwww.myfavouritemagazines.co.uk%2FAAS%2Fspace2020w" data-link-merchant="myfavouritemagazines.co.uk"" target="_blank" rel="nofollow">OFFER: Save at least 56% with our latest magazine deal!

<a href="https://myfavouritemagazines.pxf.io/c/221109/583111/9620?subId1=hawk-custom-tracking&sharedId=hawk&u=https%3A%2F%2Fwww.myfavouritemagazines.co.uk%2FAAS%2Fspace2020w" data-link-merchant="myfavouritemagazines.co.uk"" data-link-merchant="myfavouritemagazines.co.uk"" target="_blank" rel="nofollow">All About Space magazine takes you on an awe-inspiring journey through our solar system and beyond, from the amazing technology and spacecraft that enables humanity to venture into orbit, to the complexities of space science.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Andrew Jones
Contributing Writer

Andrew is a freelance space journalist with a focus on reporting on China's rapidly growing space sector. He began writing for Space.com in 2019 and writes for SpaceNews, IEEE Spectrum, National Geographic, Sky & Telescope, New Scientist and others. Andrew first caught the space bug when, as a youngster, he saw Voyager images of other worlds in our solar system for the first time. Away from space, Andrew enjoys trail running in the forests of Finland. You can follow him on Twitter @AJ_FI.

  • rod
    Admin said:
    China's Yutu-2 lunar rover has discovered what appear to be relatively young rocks during its recent exploration activities on the lunar far side.

    What's up with that rock? China's moon rover finds something strange on the far side. : Read more

    The report showed the crater region age was some 3.6E+9 years old and said this about the young rocks "Regarding the age of the rocks, Moriarty said that "fresh" is a relative term: In this case, it means that the rocks formed after the major resurfacing events in Von Kármán crater. "So that could be 10-100 million years or 1-2 billion years. It's really hard to say definitively."

    This is quite an age spread here but not uncommon. Over the years, I track *young age* reports about the Moon. Here is an example. A facelift for the Moon every 81,000 years, another report shows some surface features 50E+6 years old or younger, Mars and Moon: Not Dead Yet?
    Reconciling different age measurements is fun :) Apollo lunar rock radiometric ages, their cosmic ray exposure ages, crater dating extrapolations, etc. Reporting all those different age measurements and showing them together, that is still a work in progress I feel for many published in popular science sites.
    Reply
  • rod
    Okay, that S&T link provided is 404 error now :) It said "Moreover, the graben appear very fresh, with crisp edges that haven't been disturbed by cratering. Best guess is that they're less than 50 million years old — and they could be much, much younger." back in Feb-2012. Here is a better link, https://www.skyandtelescope.com/astronomy-news/mars-and-moon-notdeadyet/
    Reply
  • macspectrum
    i think the 'rock' is actually the coronavirus...lol
    Reply