Light Bending Trick Reveals Supremely Old, Faint Galaxy

Triple-Imaged Galaxy
The triple-imaged galaxy as seen by the Hubble Space Telescope. The peaks along the same wavelength reveal that they come from the same source. (Image credit: Bradac/HST/W. M. Keck Observatory)

By looking far, far out into the universe, it is possible to see some of the earliest galaxies to ever form. Now, scientists have spotted a very early galaxy that's the faintest they have ever seen.

The first galaxies to ever form in the cosmos lie far from the Milky Way (due to the expansion of the universe), making them a challenge to detect. Using a natural magnifying-glass process known as gravitational lensing, scientists have spotted one of the faintest of these early galaxies that they have ever observed. Scientists are seeing the galaxy as it appeared only a few hundred million years after the Big Bang kicked off the formation of the universe.

Without this natural magnification of the galaxy's light, "we would not have been able to see it," Kuang-Han Huang, of the University of California-Davis, said in a statement. Huang lead a team of international astronomers that combined images taken by the Keck Observatory in Hawaii and NASA's space-based Hubble Space Telescope to confirm the age and other characteristics of the young galaxy. [The Universe: Big Bang to Now in 10 Easy Steps]

"That shows how gravitational lensing is important for understanding the faint galaxy population," Huang said.

"Because you see three of them and the characteristics are exactly the same, that means it was [gravitationally] lensed," Keck staff astronomer Marc Kassis, who assisted the discovery team, said in the same statement.

"This galaxy is exciting because the team infers a very low stellar mass, or only one percent of one percent of the Milky Way galaxy," Kassis said. "It's a very, very small galaxy and at such a great distance, it's a clue in answering one of the fundamental questions astronomy is trying to understand: what is causing the hydrogen gas at the very beginning of the universe to go from neutral to ionized about 13 billion years ago. That's when the stars turned on and matter became more complex."

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Nola Taylor Tillman
Contributing Writer

Nola Taylor Tillman is a contributing writer for Space.com. She loves all things space and astronomy-related, and always wants to learn more. She has a Bachelor's degree in English and Astrophysics from Agnes Scott College and served as an intern at Sky & Telescope magazine. She loves to speak to groups on astronomy-related subjects. She lives with her husband in Atlanta, Georgia. Follow her on Bluesky at @astrowriter.social.bluesky