How Microbes Could Help Colonize Mars

How Microbes Could Help Colonize Mars
Some believe we could 'terraform' Mars to make it more like Earth, eliminating the need for protective habitats for future human colonizers. (Image credit: NASA/J. Bell (Cornell U.) and M. Wolff (SSI))

Tiny rock-eating microbes could minepreciousextraterrestrial resources from Mars and pave the way for the firsthumancolonists. Just don't expect them to transform the Red Planet's surfaceinto anew Earth on a short deadline, researchers say.

One of the most promising planetarycolonizers comes in theform of cyanobacteria. The ancient bacteria helped createahabitable Earth with oxygen at least 2.5 billion years ago,and have sincecolonized practically every possible environment while relying uponphotosynthesis to convert sunlight into energy.

Cyanobacteria and other rock-dwellingmicrobes also haveproven that they can survive the hard vacuum of space aboard facilitiessuch asEurope's BIOPAN exposure platform and the International Space Station'sEXPOSEplatform. Only the harshspace radiation in low Earth-orbit presents alife-threatening problem forthe hardy organisms.

"They?re quite capable of toleratingextremeconditions," said Charles Cockell, a geomicrobiologist at The OpenUniversity in the UK. "But we were surprised at their abilities totolerate some conditions such as vacuum."

Fortunately, cyanobacteria won't haveto endure quite suchharsh conditions on Mars.

We already use microbes to helpextract materials on Earth,including over 25 percent of the world's copper supply. Microbes couldserve asimilar purpose on other planets to mine resources, save on rocket fuelneededto launch such resources from Earth, and perhaps make a human base moreself-sustaining, Cockell said. [Gallery:Future Mars Bases]

"Humanity has been completely linkedinto the microbialworld, so it?s logical we would continue that relationship withmicrobes as wego into space," Cockell said. "The question is how we can mostproductively optimize them going into space."

"I suspect you could use them undergreenhouseconditions,? Cockell said. He added that some slow-growing varieties ofcyanobacteria had trouble even under optimal lab conditions.

"Terraforming is more difficultbecause you?re tryingto change planetary conditions on a short timescale," Cockell pointedout."It took hundreds of millions of years to do it on Earth."

That doesn't mean humans might notengineer a super-varietyof microbe that might do the trick down the line, Cockell said. But hisinterest remains focused on the more practical application ofharvestingresources, and continuing to test how well different microbes deal withthewide variety of extraterrestrial rocks.

"One thing we really don?t understandis whether we canuse a community of organisms to improve extraction from rocks," Cockellsaid.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Contributing Writer

Jeremy Hsu is science writer based in New York City whose work has appeared in Scientific American, Discovery Magazine, Backchannel, Wired.com and IEEE Spectrum, among others. He joined the Space.com and Live Science teams in 2010 as a Senior Writer and is currently the Editor-in-Chief of Indicate Media.  Jeremy studied history and sociology of science at the University of Pennsylvania, and earned a master's degree in journalism from the NYU Science, Health and Environmental Reporting Program. You can find Jeremy's latest project on Twitter