Skip to main content

NASA's Inflatable Heat Shield Takes Vacuum Packing to a New Level

Inflatable Heat Shield Packed
A 9-foot (3 meters) test article for an inflatable heat shield gets packed tightly by engineer Sean Hancock. (Image credit: NASA/David C. Bowman)

An inflatable-heat-shield prototype designed to protect spacecraft on other worlds has passed its first key step: making sure it fits into a rocket.

In a recent test, the 9-foot-diameter (3 meters) test shield was carefully compressed to see how it would respond to the folding and packing. By studying the doughnut-shaped heat shield tech, engineers hope to better understand how the material will behave when it automatically deploys during a future deep-space mission.

"During testing, we used a vacuum pump to compress the test article into a small space," lead project engineer Keith Johnson said in a statement from NASA. "We packed and unpacked it and did thorough inspections to check for leaks and damage to the Zylon and Teflon materials. We repeated this three times." [Watch: Inflatable Heat Shields Could Drop-Ship Bigger Robots]

The eventual goal for the inflatable technology, called the Hypersonic Inflatable Aerodynamic Decelerator (HIAD), is to use atmospheric drag to slow down a spacecraft. This will lessen the heat the spacecraft experiences while entering a planet's atmosphere, and will help the spacecraft land more gently, according to a NASA description.

An artist's illustration of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) heat shield deploying during a descent to Mars. (Image credit: NASA/Langley Research Center)

This technology could help people (in a heavy spacecraft) land using the thin atmosphere of Mars, or even return cargo from the International Space Station, NASA HIAD project officials said in the statement. One key barrier to a human Mars mission is how to land the heavy cargo required to support a crew of astronauts for weeks or months.

If this test and others are successful, NASA will build a larger HIAD that can pack into a rocket and deploy safely to bring a spacecraft safely to the ground.

Engineers at the NASA Langley Research Center prepare an inflatable-heat-shield test for packaging. (Image credit: NASA/David C. Bowman)

"All these tests build on each other to help demonstrate the performance of the system," Johnson said in the statement. "In the end, we'll have a complete system that will be tested, to show that it can meet the requirements for a spaceflight mission, whether it's going to be returning a vehicle to Earth or future Mars missions."

Follow Elizabeth Howell @howellspace, or @Spacedotcom. We're also on Facebook and Google+. Original article on

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at:

Elizabeth Howell
Elizabeth Howell

Elizabeth Howell, Ph.D., is a staff writer in the spaceflight channel since 2022. She was contributing writer for (opens in new tab) for 10 years before that, since 2012. As a proud Trekkie and Canadian, she also tackles topics like diversity, science fiction, astronomy and gaming to help others explore the universe. Elizabeth's on-site reporting includes two human spaceflight launches from Kazakhstan, three space shuttle missions in Florida, and embedded reporting from a simulated Mars mission in Utah. She holds a Ph.D. and M.Sc. in Space Studies from the University of North Dakota, and a Bachelor of Journalism from Canada's Carleton University. Elizabeth is also a post-secondary instructor in communications and science since 2015. Her latest book, Leadership Moments from NASA, is co-written with astronaut Dave Williams. Elizabeth first got interested in space after watching the movie Apollo 13 in 1996, and still wants to be an astronaut someday.