Curiosity Rover Will Sleuth for Clues to Water on Mars

Artist’s concept depicts the NASA Mars Science Laboratory Curiosity rover, a nuclear-powered mobile robot for investigating the Red Planet’s past or present ability to sustain microbial life.
This artist’s concept depicts the NASA Mars Science Laboratory Curiosity rover, a nuclear-powered mobile robot for investigating the Red Planet’s past or present ability to sustain microbial life. [Related Photos: The Search for Life on Mars] (Image credit: NASA/JPL-Caltech)

NASA's newest Mars rover, Curiosity, has a tall task ahead of itself when it lands Aug. 6 on the Red Planet.

The rover, part of the $2.5 billion Mars Science Laboratory mission, will aim to search for signs that Mars is, or ever was, habitable. Since one of the key requirements of habitability is thought to be the presence of liquid water, Curiosity will seek signs of water buried beneath the Martian surface.

To do this, the rover will shove neutrons underneath the planet's surface in hopes that the particles bump against hydrogen, one of the two types of atoms that make up water molecules. Neutrons are subatomic particles that have no electrical charge. When a neutron hits a hydrogen atom, the neutron will slow to a near-stop because the two particles are about the same size.

“The goal is in about 20 minutes of pulsing and returning and detecting the signal, [the rover] can build up a fairly good understanding of how much water there is below the surface,” said Ashwin Vasavada, MSL's deputy project scientist. [11 Amazing Things NASA's Huge Mars Rover Can Do]

From space, it's much easier to use neutrons to seek out water because high above a planet, there are many neutrons, Vasavada said. Closer to the surface, neutrons are so few and far between that MSL must carry its own artificial neutron generator.

As for water, NASA expects the landing site will have “hydrated minerals,” meaning minerals that have water molecules or hydrogen-oxygen ions stitched into the mineral's crystal fabric. NASA says these minerals can “tenaciously retain water” from a past time when water may have been more abundant on Mars.

Water, whether liquid or frozen, absorbs neutrons more than other substances. The Detector of Albedo Neutrons on the Mars Science Laboratory rover will use this characteristic to search for subsurface ice on Mars. (Image credit: NASA/JPL-Caltech/Russian Federal Space Agency)

DAN can also help researchers understand the “water cycle” on Mars and compare it with what occurs on Earth. Our planet recycles its water in a continuum between the atmosphere and bodies of water such as oceans, lakes and underground reservoirs.

DAN will try to map out the Martian water cycle in conjunction with Curiosity's cameras and its weather station, which can capture properties such as humidity, wind speed, and temperature.

Figuring out where the water goes will help scientists understand how the Martian climate works. With a little analysis, this knowledge may just make the search for life a bit easier.

Follow Elizabeth Howell @howellspace, or SPACE.com @Spacedotcom. We're also on Facebook and Google+.

Elizabeth Howell
Former Staff Writer, Spaceflight (July 2022-November 2024)

Elizabeth Howell (she/her), Ph.D., was a staff writer in the spaceflight channel between 2022 and 2024 specializing in Canadian space news. She was contributing writer for Space.com for 10 years from 2012 to 2024. Elizabeth's reporting includes multiple exclusives with the White House, leading world coverage about a lost-and-found space tomato on the International Space Station, witnessing five human spaceflight launches on two continents, flying parabolic, working inside a spacesuit, and participating in a simulated Mars mission. Her latest book, "Why Am I Taller?" (ECW Press, 2022) is co-written with astronaut Dave Williams.