Alien Planet Is Rolling Over, Forcing 4 Others to Do Same

A simulation of the silhouette of planet 55 Cancri e transiting its parent star, compared to the Earth and Jupiter transiting our sun, as seen from outside the solar system. The star 55 Cancri A is nearly a twin of the sun.
A simulation of the silhouette of planet 55 Cancri e transiting its parent star, compared to the Earth and Jupiter transiting our sun, as seen from outside the solar system. The star 55 Cancri A is nearly a twin of the sun. (Image credit: Jason Rowe, NASA Ames and SETI Institute and Prof. Jaymie Matthews, UBC)

A huge alien planet turns super-slow somersaults as it hurtles through space, dragging its four sibling planets along for the topsy-turvy ride, a new study suggests.

The giant exoplanet, known as 55 Cancri d, gets tugged by a faraway companion star as it orbits its own parent star. As a result, the planet performs a flip over the course of millions of years, and the other four planets in the system follow suit, researchers said.

"It kind of shepherds along the other planets," study lead author Nathan Kaib, of Queen's University in Canada, told SPACE.com.

Located about 40 light-years from Earth in the constellation Cancer (the Crab), the 55 Cancri system contains two stars, one with five planets in a seemingly stable orbit.  The other star is almost 1,100 times as far away from them as the sun is from Earth, but it still affects them. The effect is not on the planets' orbits but on their axes. [Gallery: The Strangest Alien Planets]

Kaib and his team ran more than 450 computer simulations of the 55 Cancri system, taking into account the influence of the companion star. The researchers decided that the spin axis of 55 Cancri d probably flips completely upside-down after millions of years. The planet's north pole finds itself pointed in the direction the south pole once claimed.

"Other studies looking at the effect of binary stars on planets tend to focus on tighter binaries," he said.

"This planetary system looks very well ordered," Kaib said.

Exactly how long it takes the planets to swing from top to bottom depends on the time it takes the two stars to circle one another. Unfortunately, that's tough to nail down, researchers said.

In its solar system, 55 Cancri d is the most distant of the five planets from their sun — a little farther than the distance between Jupiter and the sun. Three others are packed into orbits closer than Mercury is to the sun.

The closest of the five, the dense planet 55 Cancri e, completes the orbit of its sun in less than 18 hours. From Earth's viewpoint, the tiny planet passes directly in front of its parent star, which is expected to allow astronomers to measure a number of properties, including the angle of its spin orbit.

Kaib says that he spoke with several other observers experienced in determining the angle for extrasolar planets, and they are confident that it's possible to calculate the spin axis angle of 55 Cancri e.

"As the planets precess, they could drag the star along with it," Kaib said.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Nola Taylor Tillman
Contributing Writer

Nola Taylor Tillman is a contributing writer for Space.com. She loves all things space and astronomy-related, and always wants to learn more. She has a Bachelor's degree in English and Astrophysics from Agnes Scott College and served as an intern at Sky & Telescope magazine. She loves to speak to groups on astronomy-related subjects. She lives with her husband in Atlanta, Georgia. Follow her on Bluesky at @astrowriter.social.bluesky