A super-rare 'Zee burst' in Antarctica could one day unlock a key mystery of ghostly neutrinos

An illustration shows what the interior of IceCube might look like without the ice.
An illustration shows what the interior of IceCube might look like without the ice. (Image credit: Jamie Yang, IceCube Collaboration)

Where do neutrinos get their mass from? It's a mystery, one of the most baffling in the Standard Model of particle physics. But a team of physicists think they know how to solve it.

Here's the problem: Neutrinos are weird. Ultra-faint particles, most of them are so low-energy and insubstantial that they pass through our entire planet without stopping. For decades, scientists thought that they had no mass at all. In the original version of the Standard Model, which describes particle physics, the neutrino was utterly weightless. About two decades ago, that changed. Physicists now know that neutrinos have mass, albeit in miniscule amounts. And they aren't sure yet precisely why that mass is.

We can solve the mystery though, a new paper published Jan. 31 in the journal Physical Review Letters argues. Given enough time and data, the highest-energy neutrinos we can already detect should help unlock the secrets to their mass.

Detecting neutrino resonances

Neutrinos come with different amounts of energy: Two otherwise identical particles will behave very differently depending on how much energy they carry.

Most of the neutrinos we can detect come from our sun and a handful of super-bright energy sources on Earth (like nuclear reactors), and are relatively low energy. And low energy neutrinos slip through chunks of matter easily, without banging into anything. But our planet is also bombarded by much higher-energy neutrinos. And these are much more likely to bang into other particles, like a tractor trailer screaming down the highway in the passing lane.

Back in 2012, a particle detector came online in Antarctica that is designed to detect those higher-energy neutrinos. But the detector, named IceCube, can't sense them directly. Instead, it looks for the aftermath of high-energy neutrino collisions with water molecules in the surrounding ice — collisions that produce bursts of other kinds of particles that IceCube can detect. Usually those bursts are messy, producing a variety of particles. But sometimes they're unusually clean — the result of a process called resonance, said study co-author Bhupal Dev, a physicist at Washington University in St. Louis.

When a neutrino slams into another particle, specifically an electron,,e it will sometimes go through a process known as Glashow resonance, Dev told Live Science That resonance mashes the two particles together and turns them into something new: a W boson. First proposed in 1959, Glashow resonance requires very high energies, and a single example may have turned up in IceCube in 2018, according to a 2018 talk at a neutrinos conference.

But according to Dev and his co-authors, there may be other types of resonances out there. One of the more popular theories of how neutrinos get their mass is known as the "Zee model." And under the Zee model, there would be another type of resonance like Glashow, producing another new particle, known as the "Zee burst," the researchers wrote in the new study. And that resonance would be within IceCube's ability to detect.

If a Zee burst were detected, it would lead to a radical update of the Standard Model, completely transforming how physicists view neutrinos, Dev said.

The Zee model would go from a theory to firm science, and the existing model of neutrinos would be thrown out.

But IceCube is only sensitive to certain ranges of neutrino energies, and the conditions that would produce Zee bursts are on the outer edges of that range. Given time, one such incident will likely be detected by IceCube at some point in the next 30 years.

But fortunately, updates to IceCube are coming, the researchers noted. Once the detector is upgraded to the much larger and more sensitive IceCube-Gen 2 (it's not clear exactly when this will happen), the more sensitive device should be able to pick up a Zee burst within just three years — if Zee bursts are really out there.

And if Zee bursts aren't out there, and the Zee model is wrong, the mystery of the neutrino mass will only get deeper.

Originally published on Live Science.

All About Space Holiday 2019

Need more space? Subscribe to our sister title "All About Space" Magazine for the latest amazing news from the final frontier! (Image credit: All About Space)

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Rafi Letzter

Rafi wrote for Live Science from 2017 until 2021, when he became a technical writer for IBM Quantum. He has a bachelor's degree in journalism from Northwestern University’s Medill School of journalism. You can find his past science reporting at Inverse, Business Insider and Popular Science, and his past photojournalism on the Flash90 wire service and in the pages of The Courier Post of southern New Jersey.

  • rod
    Admin said:
    Watch out for the Zee burst!

    A super-rare 'Zee burst' in Antarctica could one day unlock a key mystery of ghostly neutrinos : Read more

    An important link was provided with this comment on primordial neutrinos in the Big Bang model. From Big Bang to Present: Snapshots of Our Universe Through Time, "As the cosmos expanded, it cooled, and soon conditions were clement enough for quarks to come together into protons and neutrons. One second after the Big Bang, the universe's density dropped enough that neutrinos — the lightest and least-interacting fundamental particle — could fly forward without hitting anything, creating what's known as the cosmic neutrino background, which scientists have yet to detect."

    *Yet to detect* is a good and objective comment. Without the flood of primordial neutrinos created 1 second after the Big Bang, the Big Bang did not happen. There are many other interesting and exotic particles created in cosmology today as well during the period Planck time to 3 minutes or so after the Big Bang event. Inflatons used in inflation theory is an example.