Space Shuttle and Strange Clouds Key to Mysterious 1908 Explosion

Last Shuttle Flight Made Clouds Over Antarctica
Noctilucent Clouds over Kustavi, Finland. Photo taken July 27/28, 2001, at approximately 12:30 AM local time or 4 hours after sunset. This image shows a noctilucent cloud illuminating the water below and a gold hue on the horizon. (Image credit: Pekka Parviainen.)

Ever since something generated a huge explosion over Siberia in 1908, flattening an area as big as a large city, scientists have been trying to figure out what caused it.

Among the enduring mysteries: Following the explosion, the night skies shone brightly for several nights across Europe all the way to London, 3,000 miles away.

Noctilucent clouds are brilliant, and visible only at night. Made of ice particles, they are Earth's highest clouds, forming in the mesosphere some 55 miles over the polar regions during the summer months when, up there, it is around minus 180 degrees Fahrenheit (minus 117 degrees Celsius).

The ephemeral noctilucent clouds are relatively new, at least to scientists. According to Gary Thomas, a professor at the University of Colorado, they were first seen in 1885, about two years after the powerful eruption of the Krakatoa volcano in Indonesia, which hurled plumes of ash as high as 50 miles (80 kilometers) into Earth's atmosphere. They were photographed by astronauts aboard a space shuttle flight in 2003.

About 97 percent of the exhaust from a shuttle launch turns into water, a by-product of the liquid hydrogen and liquid oxygen fuel. A single shuttle flight pumps 300 metric tons of water vapor into the Earth's thermosphere, and the water particles have been found to travel to the Arctic and Antarctic regions.

Noctilucent clouds were tied to the launch of Endeavour (STS-118) on Aug. 8, 2007. And high-altitude clouds were detected over Antarctica shortly after the fateful launch of Columbia, which along with its crew was lost during re-entry. Columbia's plume was 650 miles long and 2 miles wide and reached Antarctica in three days.

But Kelley's team thinks a comet fits better, since comets are loaded with water ice (asteroids are mostly rock and metals). The comet would have started to break up at about the same altitude as the release of the exhaust plume from the space shuttle following launch, they calculate. In both cases, water vapor was injected into the atmosphere.

"There is a mean transport of this material for tens of thousands of kilometers in a very short time, and there is no model that predicts that," Kelley said. "It's totally new and unexpected physics."

"Our observations show that current understanding of the mesosphere-lower thermosphere region is quite poor," said Charlie Seyler, Cornell professor of electrical engineering and a co-author of the research paper.

"The evidence is pretty strong that the Earth was hit by a comet in 1908," Kelley said.

  • Newsreel: Tunguska Expedition
  • Gallery: Earth's Meteor Craters
  • Video: Exploding Space Rocks

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Robert Roy Britt
Chief Content Officer, Purch

Rob has been producing internet content since the mid-1990s. He was a writer, editor and Director of Site Operations at Space.com starting in 1999. He served as Managing Editor of LiveScience since its launch in 2004. He then oversaw news operations for the Space.com's then-parent company TechMediaNetwork's growing suite of technology, science and business news sites. Prior to joining the company, Rob was an editor at The Star-Ledger in New Jersey. He has a journalism degree from Humboldt State University in California, is an author and also writes for Medium.