Radio Receivers Record Cosmic Rays Hitting Earth

Radio Receivers Record Cosmic Rays Hitting Earth
A false-color radio map of the sky above the LOPES experiment at the time of a cosmic ray hit. The bright blob in the center of the image is the radio flash, which lasts for about 30 billionths of a second. (Image credit: LOPES collaboration)

A small prototype array in Germany has detected several radio flashes from cosmic rays that smack into the Earth's upper atmosphere. A larger array, with more of these low-cost radio antennas, could help astrophysicists decipher the mystery behind the highest energy cosmic rays.

Cosmic rays are high-speed sub-atomic particles - mostly nuclei and protons - that zip around space in all directions. Lucky for us, they cannot plow very far into our atmosphere before they collide with a gas molecule.

Surprisingly, some of these space-faring projectiles have a 100 million times more energy than is possible in man-made accelerators. There are no "cosmic accelerators" in our galactic neighborhood that seem powerful enough to generate particles with this much energy.

Therefore, these so-called ultra-high energy cosmic rays (UHECRs) presumably come from colliding galaxies or large black holes hundreds of millions of light years away. But that raises a problem: cosmic "stuff" along the way will slow - or even outright destroy - high-energy particles traveling these great distances.

Sorting out the origin and nature of UHECRs is part of the impetus of the LOPES (LOFAR Prototype Station) experiment. This array of 10 low-cost radio antennas captures flashes emitted by a shower's electrons and positrons, as they interact with the Earth's magnetic field. The more energy in the initial cosmic ray, the more radio emission.

"It is amazing that with simple FM radio antennas we can measure the energy of particles coming from the cosmos," said Heino Falcke, spokesperson for the LOPES collaboration. "If we had sensitive radio eyes, we would see the sky sparkle with radio flashes."

LOPES has not yet detected any flashes from UHECRs. To do so would probably require a larger set of detectors, since a square mile of the Earth's atmosphere is hit by an UHECR only once a century. Bigger radio arrays, such as the Low-Frequency Array (LOFAR) and Square Kilometer Array (SKA), are currently in development.

"This is indeed an unusual combination, where nuclear physicists and radio astronomers work together to create a unique and highly original astroparticle physics experiment," said Anton Zensus from the Max-Planck Institut fuer Radioastronomie (MPIfR) in Bonn.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Michael Schirber
Contributing Writer

Michael Schirber is a freelance writer based in Lyons, France who began writing for Space.com and Live Science in 2004 . He's covered a wide range of topics for Space.com and Live Science, from the origin of life to the physics of NASCAR driving. He also authored a long series of articles about environmental technology. Michael earned a Ph.D. in astrophysics from Ohio State University while studying quasars and the ultraviolet background. Over the years, Michael has also written for Science, Physics World, and New Scientist, most recently as a corresponding editor for Physics.