What Is the Sun Made Of?
NASA's Solar Dynamics Observatory saw sunspot AR 1520 before the solar flare erupted from it on July 12, 2012.
Credit: NASA/SDO (via Twitter @NASA_SDO)

The sun is a big ball of gas and plasma. Most of the gas — 91 percent — is hydrogen. It is converted into energy in the sun's core. The energy moves outward through the interior layers, into the sun's atmosphere, and is released into the solar system as heat and light.

In the sun's core, gravitational forces create tremendous pressure and temperatures. The temperature of the sun in this layer is about 27 million degrees Fahrenheit (15 million degrees Celsius). Hydrogen atoms are compressed and fuse together, creating helium. This process is called nuclear fusion. As the gases heat up, atoms break apart into charged particles, turning the gas into plasma.

The energy, mostly in the form of gamma-ray photons and neutrinos, is carried into the radiative zone. Photons can bounce around in this zone for about a million years before passing through the interface layer, or tachocline. Scientists think the sun's magnetic field is generated by a magnetic dynamo in this layer.

The convection zone is the outermost layer of the sun's interior. It extends from about 125,000 miles (200,000 km) deep up to the visible surface or the sun's atmosphere. The temperature drops below 3.5 million degrees F (2 million degrees C) in the convective zone, where hot plasma bubbles up toward the surface.

The convective motions carry heat quite rapidly to the surface, which is the bottom layer of the sun's atmosphere, or photosphere. This is the layer where the energy is released as sunlight. The light passes through the outer layers of the sun's atmosphere — the chromosphere and the corona. We usually can't see these layers, but during a total solar eclipse, the chromosphere looks like a red rim around the sun, and the corona forms a white crown with plasma streamers spreading outward.

Astronomers who have studied the composition of the sun have catalogued 67 chemical elements in the sun. There may be more, but in amounts too small for instruments to detect. Here is a table of the 10 most common elements in the sun:

Element Abundance (pct.
of total number
of atoms)
Abundance
(pct. of total mass)
Hydrogen 91.2         71.0        
Helium 8.7         27.1        
Oxygen 0.078         0.97        
Carbon 0.043         0.40        
Nitrogen 0.0088         0.096        
Silicon 0.0045         0.099        
Magnesium 0.0038         0.076        
Neon 0.0035         0.058        
Iron 0.030         0.014        
Sulfur 0.015         0.040        

NASA Solar System Exploration