Surprising Find: Sonic Booms in Space May Shape Interstellar Strings

Dense filaments of gas in the IC5146 interstellar cloud, in an infrared photo from ESA’s Herschel space observatory.
Dense filaments of gas in the IC5146 interstellar cloud, in an infrared photo from ESA’s Herschel space observatory. (Image credit: ESA/Herschel/SPIRE/PACS/D. Arzoumanian (CEA Saclay) for the “Gould Belt survey” Key Programme Consortium)

New images from space reveal a photogenic, yet puzzling, look at tangled cosmic filaments that may be shaped by interstellar sonic booms throughout our galaxy.

The filaments are strings of gas in nearby clouds between stars in our galaxy. Intriguingly, each filament is approximately the same width, giving scientists a clue of how they are formed, astronomers said.

The photos come from the European Space Agency's Herschel space observatory, which observes the cosmos through the largest infrared telescope ever to be flown in space.

While previous studies have observed filaments, no telescope has been able to measure their widths clearly enough. The new photos from Herschel allowed scientists to discover that, regardless of the length or density of a filament, the width is always about the same. 

"This is a very big surprise," lead researcher Doris Arzoumanian, of the Laboratoire AIM Paris-Saclay, said in a statement.

Interstellar clouds are usually extremely cold, about 10 degrees Kelvin above absolute zero, and this makes the speed of sound in them relatively slow, at just 447 mph (720 kph). For comparison, the speed of sound in Earth's atmosphere at sea-level is 760 mph (1,224 kph).

"This is not direct proof, but it is strong evidence for a connection between interstellar turbulence and filaments," said co-researcher Philippe André, also of the Laboratoire AIM Paris-Saclay. "It provides a very strong constraint on theories of star formation."

The team made the connection by studying three nearby clouds, known as IC5146, Aquila, and Polaris, using Herschel’s SPIRE and PACS instruments.

"The connection between these filaments and star formation used to be unclear, but now thanks to Herschel, we can actually see stars forming like beads on strings in some of these filaments," said Göran Pilbratt, the ESA Herschel project scientist.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Space.com Staff
News and editorial team

Space.com is the premier source of space exploration, innovation and astronomy news, chronicling (and celebrating) humanity's ongoing expansion across the final frontier. Originally founded in 1999, Space.com is, and always has been, the passion of writers and editors who are space fans and also trained journalists. Our current news team consists of Editor-in-Chief Tariq Malik; Editor Hanneke Weitering, Senior Space Writer Mike Wall; Senior Writer Meghan Bartels; Senior Writer Chelsea Gohd, Senior Writer Tereza Pultarova and Staff Writer Alexander Cox, focusing on e-commerce. Senior Producer Steve Spaleta oversees our space videos, with Diana Whitcroft as our Social Media Editor.