Skip to main content

We may have found the most powerful particle accelerator in the galaxy

This image, created using data from the European Space Agency’s Herschel and Planck space telescopes, shows a piece of the Taurus Molecular Cloud.
This image, created using data from the European Space Agency’s Herschel and Planck space telescopes, shows a piece of the Taurus Molecular Cloud. (Image credit: ESA/Herschel/Planck; J. D. Soler, MPIA)

Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space. He contributed this article to Space.com's Expert Voices: Opinions and Insights.

Astronomers have long wondered where high-energy cosmic rays come from within our galaxy. 

And now, new observations with the High Altitude Water Cherenkov Experiment (HAWC) observatory reveal an unlikely candidate: an otherwise mundane giant molecular cloud.

The Milky Way galaxy: Facts about our galactic home

Taking the knee

Cosmic rays are not rays at all but rather tiny particles cruising through the universe at nearly the speed of light. They can be made of electrons, protons or even ions of heavier elements. They are created in all sorts of high-energy processes throughout the cosmos, from supernova explosions to the mergers of stars to the final insane moments when gas gets sucked up by a black hole.

Cosmic rays come in all sorts of energies, and generally speaking the higher-energy cosmic rays are rarer than their low-energy relatives. This relationship changes in a very slight way at a particular energy — 10^15 electron-volts — which is called the "knee." The electron-volt, or eV, is just the way that particle physicists enjoy measuring energy levels. For comparison, the most powerful particle collider on Earth, the Large Hadron Collider, can achieve 13 X 10^12 eV, which is often denoted as 13 tera electron-volts, or 13 TeV.

Above an energy of 10^15 eV, cosmic rays are much rarer than you would expect. This has led astronomers to believe that any cosmic rays at this energy level and higher come from outside the galaxy, while processes within the Milky Way are capable of producing cosmic rays up to and including 10^15 eV.

For those of you keeping score at home, whatever is creating these cosmic rays would be in the "peta" range of Greek prefixes, and therefore over 1,000 times more powerful than our best particle accelerators — natural "PeVatrons" roaming the galaxy.

Gallery: 65 all-time great galaxy hits

A hawkeyed sleuth

The mission is simple: find the source of PeV-scale cosmic rays in the Milky Way. But despite their energies, it's hard to pinpoint their origins. That's because cosmic rays are made of charged particles, and charged particles traveling through interstellar space respond to our galaxy's magnetic field. Thus when you see a high-energy cosmic ray coming from a particular direction in the sky, you actually have no idea where it truly came from — its path has bent and curved over the course of its journey to Earth.

But instead of hunting for cosmic rays directly, we can search for some of their relatives. When cosmic rays accidentally strike a cloud of interstellar gas, they can emit gamma rays, a high-energy form of radiation. These gamma rays shoot straight-line through the galaxy, allowing us to directly pinpoint their origins.

So if we see a source of strong gamma-ray emission, we can look for nearby sources of PeV cosmic rays.

This was the method employed by a team of researchers using HAWC, which is located on the Sierra Negra Volcano of south-central Mexico. HAWC "stares" up at the sky with a series of tanks filled with ultra-pure water. When high-energy particles or radiation enter the tanks, they emit a flash of blue light, allowing astronomers to trace back the source onto the sky.

Detailed in a paper recently appearing in the preprint journal arXiv, the astronomers found a source of gamma rays exceeding 200 TeV, which could only be created by even more powerful cosmic rays — the kinds of cosmic rays that reach up into the PeV scale. The source, called HAWC J1825-134, lies roughly in the direction of the galactic center. HAWC J1825-134 appears to us as a bright blotch of gamma rays, illuminated by some unknown fount of cosmic rays — perhaps the most powerful known source of cosmic rays in the Milky Way.

An unlikely heavyweight

A few of the usual suspect sources of high-energy cosmic rays sit within a few thousand light-years of HAWC J1825-134, but none of them can easily explain the signal.

For example, the galactic center itself is a known generator of intense cosmic ray action, but it's way too far away from HAWC J1825-134, so it has no bearing on this measurement.

There are some supernova remnants, and supernovae sure are powerful. But all the supernovae in the region of HAWC J1825-134 went off ages ago — far too long in the past to be creating these high-energy cosmic rays now.

Pulsars — the rapidly spinning dense remnant cores of massive stars — also produce copious amounts of cosmic rays. But those too sit too far away from the source of gamma rays — the energies of the electrons and protons coming off the pulsar just aren't punchy enough to travel the thousands of light-years to the location of the gamma ray emission.

Surprisingly, the source of these record-breaking cosmic rays appears to be none other than a giant molecular cloud. These clouds are giant, lumbering brutes, filled with dust and gas, that roam the galaxy. They occasionally contract in on themselves and turn into stars, but otherwise they can remain cool and loose for billions of years. Not causing anyone any serious threat — and barely even noticeable unless you have good infrared telescopes — they are the last place you would expect to find such insanely high energies.

Located within the cloud complex is a cluster of newborn stars, but even the crankiest and loudest of baby stars aren't thought to be powerful enough to launch cosmic rays like this. The researchers themselves admit that they don't know how this cloud is doing it, but somehow, when nobody was paying attention, it generated some of the most powerful particles in the entire galaxy.

Read more: "Evidence of 200 TeV photons from HAWC J1825-134"

Follow us on Twitter @Spacedotcom or Facebook. 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Paul Sutter

Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute in New York City. Paul received his PhD in Physics from the University of Illinois at Urbana-Champaign in 2011, and spent three years at the Paris Institute of Astrophysics, followed by a research fellowship in Trieste, Italy, His research focuses on many diverse topics, from the emptiest regions of the universe, to the earliest moments of the Big Bang, to the hunt for the first stars. As an "Agent to the Stars," Paul has passionately engaged the public in science outreach for several years. He is the host of the popular "Ask a Spaceman!" podcast, author of "Your Place in the Universe" and "How to Die in Space," and frequently appears on TV.