Life in the Dark: How Organisms Survived Asteroid Impacts

Life in the Dark: How Organisms Survived Asteroid Impacts
One of the phototrophs used in the experiment was Chlorella vulgaris. (Image credit: Charles University in Prague)

Adinosaur-killing asteroid may have wiped out much of life on Earth 65 millionyears ago, but now scientists have discovered how smaller organisms might havesurvived in the darkness following such a catastrophic impact.

Survivalmay have depended upon jack-of-all-trades organisms called mixotrophs that canconsume organic matter in the absence of sunlight. That would have provedcrucial during the long months of dust and debris blottingout the sun, when plenty of dead or dying organic matter filled the Earth'soceans and lakes.

"Mixotrophsare very good at stabilizing situations by using whatever resources are there,and can often provide what resources there aren't," said Harriet Jones, abiologist at the University of East Anglia in the UK. "They're very goodat coping in extreme environments, and enabling other organisms tolive."

Scientistshave long debated the overall impact of the K-T extinction that may haveheralded the end of the dinosaurs, but most researchers agree that such anevent would have thrown up enough dust and debris to darken Earth's skies forabout six months. A lack of sunlight would have killed off a majority ofplants, eliminating the food supply for animals higher up the food chain.

"Theliterature was always saying in that biological production would cease in apost-catastrophic environment," Jones noted. "We felt that because ofwhat mixotrophy algae could do, that wasn't always the case."

"Wewere extremely surprised at how well phototrophs did during six monthsdarkness, when they can't eat at all," Jones said. Such findings may causeresearchers to rethink how well certain life forms survived the catastrophicimpacts that dot Earth's geological record.

"Solong as mixotrophs are cycling nutrients, [phototroph] algae can take offquickly and get the life cycle going," Jones explained.

"Youcan only do so much in a flask, and obviously the mix of species would be muchgreater in a natural environment," Jones pointed out.

 

 

Contributing Writer

Jeremy Hsu is science writer based in New York City whose work has appeared in Scientific American, Discovery Magazine, Backchannel, Wired.com and IEEE Spectrum, among others. He joined the Space.com and Live Science teams in 2010 as a Senior Writer and is currently the Editor-in-Chief of Indicate Media.  Jeremy studied history and sociology of science at the University of Pennsylvania, and earned a master's degree in journalism from the NYU Science, Health and Environmental Reporting Program. You can find Jeremy's latest project on Twitter