Could Life Be 12 Billion Years Old?

Much of thesearch for life outside of Earth's biological oasis has focused on examiningthe conditions on the other planets in our solar system and probing the cosmosfor other Earth-like planets in distant planetary systems.

But oneteam of astronomers is approaching the question of lifeelsewhere in the universe by looking for life'spotential beginning.

AparnaVenkatesan, of the University of San Francisco, and Lynn Rothschild, of NASA'sAmes Research Center in Moffett Field, Calif., are using models of starformation and destruction to determine when in the roughly 13.7 billion-year historyof the universe the biogenic elements ? those essential to life as we know it ?might have been pervasive enough to allow life to form.

"Canyou blast that open? Could you really start really talking about life in theuniverse at 12 billion years? And that's the question that we're talking about,"Rothschild said.

With basicestimates of the elements produced by the first several generations of stars,the pair has so far found that "most of [the essential elements] can becreated fairly quickly in the early universe," Venkatesan said.

For life aswe know it to form and thrive, four conditions must be met: sufficient amountsof the so-called biogenic elements, a solvent (on Earth, that solvent is liquidwater), a source of energy, and time "for the elements to build up andcreate a home and conditions for life to thrive," Venkatesan explained.

"Carbonin particular is very interesting," Venkatesan said. Carbon is "ubiquitousin the solar system and beyond" and "is extremely versatilechemically."

Theexplosions that end these stars' lives can vary though, and their differentsignatures indicate the amounts of metals, such as iron and nickel, involved,Venkatesan said.

It isthought that the first stars to form in the early universe were very massive.These stars would have characteristic compositions that in turn imply that theywould have specific elemental abundances "that they create in their deaththroes."

The twoscientists came up with the idea for applying the study of the first stars toastrobiology when Rothschild came to Venkatesan's department for a talk. Whiletalking at dinner that night, "we began to realize it might be really funto look at just when the first building blocks for life could be outthere," Venkatesan said. "To the best of our knowledge, we didn'tknow anyone else out there who was at the time talking about it or thinkingabout it."

Rothschilddrew up what she calls her "wish list" of elements that she considersabsolutely essential to life as we know it. Venkatesan then used currenttheories of star formation, from the first very massive stars to the stars thatformed later from the seeds sown by the first stars, to model the build up ofeach of the biogenic elements.

"Thenumber one element is carbon," Rothschild said. "And you come up withthat because they're really only two elements that have any real versatility interms of being able to create a bunch of compounds that could then form a life,and one is silicon and one is carbon."

But silicongets ruled out because it isn't as prevalent in the universe, nor as chemicallyversatile.

"Thereality check is that we're sitting on a big silicate rock, and we're not madeof silicon," Rothschild said.

"Nitrogenseems to be critical. It's found in so many compounds, and that really addshuge versatility then to the suite," Rothschild said. Nitrogen, forexample, is the backbone of amino acids, which in turn are the building blocksof proteins and have been detected in interstellar space.

Secondaryand tertiary lists include phosphorus, sulfur, iron and magnesium, "andall sorts of funky things which are used a lot, but I could more easilyconceive of a system without it," Rothschild said.

They foundthat "nitrogen can actually build up very quickly," Venkatesan said.But not right at the beginning, because those first massive stars "woefullyunder-produce nitrogen." It takes later-generation stars to boost levelshigh enough to what scientists think might be needed to make the elementpervasive enough.

Carbon also"takes a little while to build up," because it needs low- andintermediate- mass stars, Venkatesan said.

While thoseearly massive stars would have had trouble producing nitrogen, they "arefairly efficient at producing iron early on. That is because they completelyblow apart," Venkatesan said.

Though thecritical masses of biogenic elements needed to allow life to form aren't known,"these amounts will be more than enough," Venkatesan said.

Of course, knowingwhich elements need to be present and whether or not they are won't answer thequestion of when life might have been able to spring forth. The elements mustalso collect in pools in significant enough amounts.

"Thatfinal question is not only which elements, but what concentration do you buildup locally?" Rothschild said.

"Allwe need is one place in the universe that has the conditions, the prerequisites,"Rothschild said.

There isalso the question of whether life could have thrived in the harsh,ultraviolet-dominated environments of the earlystars. Ultraviolet light is thought to have both beneficial and detrimentaleffects on life, but which might have won out in the early universe isn'tknown.

Ultimatelythe question will become, "can we build up the building blocks" earlyon, Venkatesan said. Though answering that question will take some time, itcould have a substantial impact on studies of the early universe, exoplanetresearch, and the expectations of how far along alien life might have evolved,not to mention our view of our place in the universe.

"It'snot going to cure cancer," Rothschild said. "But I think in a way,it's a very profound question: when can you start talking about life in ouruniverse?"

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Andrea Thompson
Contributor

Andrea Thompson is an associate editor at Scientific American, where she covers sustainability, energy and the environment. Prior to that, she was a senior writer covering climate science at Climate Central and a reporter and editor at Live Science, where she primarily covered Earth science and the environment. She holds a graduate degree in science health and environmental reporting from New York University, as well as a bachelor of science and and masters of science in atmospheric chemistry from the Georgia Institute of Technology.