Comet Threat More Constant Than Thought

Comet Threat More Constant Than Thought
Halley's Comet becomes visible to the unaided eye about every 76 years as it nears the sun. (Image credit: Lick Observatory)

It certainly captures the imagination: a star passing silently by our solar system knocks a deadly barrage of comets towards Earth. However, recent simulations by one group of researchers has shown that these star-induced comet showers may not be as dramatic as once thought.

The idea of nearby stars influencing comets goes back to 1950, when the astronomer Jan Hendrik Oort hypothesized an invisible repository of comets — the so-called Oort cloud — swarming around the solar system out to a distance of 100,000 AU (one AU is the distance between the sun and the Earth).

"The comets we see now could be from a stellar passage hundreds of millions of years ago," said Hans Rickman of the Uppsala Astronomical Observatory in Sweden.

"It's quite difficult to tell a comet-induced crater from an asteroid one, since the impactor gets essentially vaporized," Rickman said.

Comet orbits can be altered whenever another star comes within 10,000 AU of our sun. Such a close encounter — occurring every 100 million years or so — will not typically disturb asteroids or planets, but it definitely "shakes up the whole Oort cloud," Rickman said.

Astronomers have known for some time that our galaxy's gravity has an influence on the Oort cloud. Specifically, the cloud experiences a tidal effect due to the fact that the gravitational field is stronger the closer one is to the plane of the galaxy.

The simulations by Rickman and colleagues show how the galactic tide constantly gives a small nudge to the cloud's comets. Some of these comets are in rather unstable orbits to begin with, so the slight push can send them on a sun-bound trajectory. Eventually, however, all these unstable comets are ejected from the solar system.

"The general picture spawned by our results is that injection of comets from the Oort Cloud is essentially to be seen as a teamwork involving both tides and stars," the scientists write in their paper.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Michael Schirber
Contributing Writer

Michael Schirber is a freelance writer based in Lyons, France who began writing for Space.com and Live Science in 2004 . He's covered a wide range of topics for Space.com and Live Science, from the origin of life to the physics of NASCAR driving. He also authored a long series of articles about environmental technology. Michael earned a Ph.D. in astrophysics from Ohio State University while studying quasars and the ultraviolet background. Over the years, Michael has also written for Science, Physics World, and New Scientist, most recently as a corresponding editor for Physics.