Mystery Spirals on Mars Finally Explained

Mystery Spirals on Mars Finally Explained
View of the north polar region of Mars from orbit. The ice- rich polar cap (quasi-circular white area at center) is about 1,000 km across. It is bisected by a large canyon, Chasma Boreale, on the right side. Chasma Boreale is about the size of the Grand Canyon in the U.S. and up to 2 km deep. (Image credit: NASA/Caltech/JPL/E. DeJong/J. Craig/M. Stetson)

Huge troughs curving outward from the north pole of Marslike the arms of a pinwheel were not carved into the polar ice caps by somemysterious force, researchers have discovered. Instead, the shifting patternarose from a long process of formation and erosion that gave it the appearanceof slowly moving and spiraling inward over time.

A similarly snail-like process gave rise to the ChasmaBoreale canyon that cuts into the side of the giant pinwheel pattern, known asthe north polar layered deposits (NPLD). The unveiling of the origins of thecanyon and NPLD came courtesy of ground-penetrating radar carried by twoMars orbiters.

"Radar is like opening the book; we can read each pagenow," said Isaac Smith, a planetary scientist at the University of TexasAustin. "People were looking at the outside and thinking they knew whatthe book was about, but they didn?t."

Such technology allowed scientiststo take 2-D cross-section images of the troughs and reveal the layers withinthe walls, like snapshots in time going back through the red planet's history.Radar also helped trace reflective markers that followed the geometry ofunderground structures to build up a 3-D sense of the layers.

Some researchers had suggested that pressure-induced meltingor sub-ice volcanic activity caused the canyon to appear. Yet the canyon'sbirth turned out to result more from the slow workings of climate and time,rather than rapid or catastrophic forces.

"There were many hypotheses about the Chasma Boreale,and all assumed it was a recent feature cut into the polar ice," said JackHolt, a geophysicist at the University of Texas, Austin. "But now we knowit's an old feature, and you can interpret the stratigraphy in thatcontext."

Both the Chasma Boreale and the younger troughs formed ontop of an older polar ice cap. Layers of water-ice and grit began depositing,and soon an early form of the canyon appeared. But it wasn't alone; asimilarly-sized canyon also began to take shape.

"The [canyon formation] happened for some time with nogood age constraints," Holt said. "That was about 75 percent of theway through the history of this, but then the troughs started forming. We don'tknow why."

The younger, shallower troughs began to form sometimebetween 2.49 million years and 467,000 years ago. They represented depressionson top of about three quarters of built-up polar layered deposits, but theydidn't just sit still.

"Radar shows that three quarters of the ice has beensitting there, but the surface was altered by wind," Smith explained."Some troughs have moved as much as 65 kilometers [40 miles], and manymoved much less."

"That tells us a storyabout the wind and possibly the sun," Smith said. "That's thecontinuing story."

"You can then start placing age constraints on icedeposits at lower to mid latitudes, which are more accessible to robotand human missions," Holt pointed out.

Future work might also solve the mystery of the south polarlayered deposits, which also resemble the spiral pattern of their north polarcousins. But unlike in the north, the south polar layered deposits don't appearto move.

"In the future, we could probably learn even more aboutthe subsurface," Holt said. "There's still more we could learn with anewer, better radar."

  • Images: Red Planet Revealed
  • Get to Know MRO: 10 Mars Reconnaissance Orbiter Facts
  • Gallery: Ice on Mars

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Contributing Writer

Jeremy Hsu is science writer based in New York City whose work has appeared in Scientific American, Discovery Magazine, Backchannel, Wired.com and IEEE Spectrum, among others. He joined the Space.com and Live Science teams in 2010 as a Senior Writer and is currently the Editor-in-Chief of Indicate Media.  Jeremy studied history and sociology of science at the University of Pennsylvania, and earned a master's degree in journalism from the NYU Science, Health and Environmental Reporting Program. You can find Jeremy's latest project on Twitter