Matter's Victory Over Antimatter Leaves Puzzling Aftermath

Antimatter Eludes Search Efforts
The Bullet Cluster, located about 3.8 billion light years from Earth, formed after a violent collision of two giant clusters of galaxies. This image combines an X-ray image from Chandra with optical data from the Hubble Space Telescope and the Magellan telescope in Chile. (Image credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.)

This story was updated at 11:55 p.m. ET.

The recent announcementthat just a smidge more matter than antimatter was created during eight yearsof atom-smashing by a particle accelerator in Illinois is an encouraging stepfor scientists trying to figure out the universe around us. But researchers stillhave a tough job ahead to determine if what they saw is enough to explain thecold, hard fact that today's universe actually exists.

The balance between certainmatter and antimatter particles tipped toward normal matter by just 1percent during the particle-smashing run at the 4-mile Tevatron collider at theDepartment of Energy's Fermi National Accelerator Laboratory (Fermilab) inBatavia, Ill. It's highly unlikely that the 1 percent came about due to chance,according to statistical analysis, researchers said.

"We know that what wemeasured is more than what was previously known," said StefanSoldner-Rembold, a physicist at the University of Manchester in the UnitedKingdom. "Whether this is now sufficient to explain cosmological models,well, that's something theorists have to calculate."

Physicists have longsuspected that something tilted the balance in favor of matter overantimatter, despite the original universe starting with equal amounts ofboth in theory. Yet the Standard Model of particle physics barely allows forany matter-antimatter asymmetry or imbalance — certainly not enough to giverise to today's universe.

"We know there's thisasymmetry in the Standard Model, but for the quantity measured it's reallynegligibly small," Stefan Soldner-Rembold explained.

By the same token, any biggerimbalance discovered between matter and antimatter "would be due to somenew effect," Soldner-Rembold told SPACE.com.

The research team workingon Fermilab's DZero experiment hopes that their new finding might be enough to explain how matter won out.

"It gives morecredence [to a theory] if you have more than one hint pointing in the samedirection," Soldner-Rembold noted.

"When you perform anexperiment, you have to be really sure these background differences are small,"Soldner-Rembold said.

  • POLL: Will Scientists Unravel the Universe's Matter-Antimatter Mystery?
  • The Strangest Things in Space
  • What is Antimatter?

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Contributing Writer

Jeremy Hsu is science writer based in New York City whose work has appeared in Scientific American, Discovery Magazine, Backchannel, Wired.com and IEEE Spectrum, among others. He joined the Space.com and Live Science teams in 2010 as a Senior Writer and is currently the Editor-in-Chief of Indicate Media.  Jeremy studied history and sociology of science at the University of Pennsylvania, and earned a master's degree in journalism from the NYU Science, Health and Environmental Reporting Program. You can find Jeremy's latest project on Twitter