Skip to main content

Cassini's 13 Greatest Discoveries During Its 13 Years at Saturn

Observing cosmic particle accelerators

ESA

While Cassini is primarily a planetary science mission, focused on looking at Saturn and its moons, occasionally the spacecraft made observations that were useful for scientists in other subfields of astronomy. Take supernovas, for example: those massive explosions that happen at the end of a star's life.

In a study released in 2013, Cassini detected particles accelerated to very high energies, which is similar to the process that happens in supernovas. The particles themselves did not arrive from star explosions, but from a strong burst of solar wind — the constant stream of particles that emanate from our sun. The particles slammed into Saturn's magnetic field and created a shockwave that accelerated the particles to those furious speeds. Supernovas create similar shockwaves after they explode, but they are rare and happen quickly. Researchers often have to study supernova in other galaxies, from millions of light-years away. The authors of the study argued that Cassini's observations could provide an analogue for researchers to learn about supernova shockwaves.

Rhea's weird environments

NASA/JPL/Space Science Institute

While every moon is unique, scientists discovered a huge range of conditions at Rhea. For example, the moon is among the most heavily cratered objects in the solar system — which is strange, because moons of similar size (such as Dione or Tethys) are much smoother. One explanation is that the other moons' icy surfaces melt and become smooth due to internal heating caused by Saturn's gravity. Another is that Rhea receives more impacts due to its more distant location from the planet compared to Dione and Tethys.

Scientists are also in search of the source of plasma measurements, which were announced as possible rings in 2008. However, later observations in optical wavelengths did not reveal any rings, deepening the mystery.

Making a spacecraft last a long time

NASA

While Cassini will always be remembered for its spectacular discoveries at Saturn, humanity cannot forget the only reason it did so — because it managed to stay alive for the seven years it took to fly from Earth, and it survived for an astounding 13 additional years in Saturn's orbit.

Cassini's longevity will surely be a case study in how to design spacecraft; the reason the mission is ending now is not because the instruments are failing, but because the spacecraft is out of fuel. The spacecraft was also low on failures during its mission, only experiencing the occasional "safe mode" (which happens when the probe has a malfunction or something else goes wrong) — from which it always recovered quickly.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Elizabeth Howell, Ph.D., is a contributing writer for Space.com (opens in new tab) since 2012. As a proud Trekkie and Canadian, she tackles topics like spaceflight, diversity, science fiction, astronomy and gaming to help others explore the universe. Elizabeth's on-site reporting includes two human spaceflight launches from Kazakhstan, and embedded reporting from a simulated Mars mission in Utah. She holds a Ph.D. and M.Sc (opens in new tab). in Space Studies from the University of North Dakota, and a Bachelor of Journalism from Canada's Carleton University. Her latest book, NASA Leadership Moments, is co-written with astronaut Dave Williams. Elizabeth first got interested in space after watching the movie Apollo 13 in 1996, and still wants to be an astronaut someday.