Dark Matter's New Wrinkle: It May Behave Like Wavy Fluid

Wavy Dark Matter
(a) This figure shows that a comparison of the distribution of matter is very similar on a large scale between wave dark matter, the focus of this research, and the usual dark matter particle. (b) This figure shows that in galaxies the structure is very different in the interpretation of the wave, which has been carried out in this research; the research predicts the soliton of dark matter in the center surrounded by an extensive halo of dark matter in the form of large "spots," which are the slowly fluctuating density waves. This leads to many predictions and solves the problem of puzzling cores in smaller galaxies. (Image credit: Broadhurst)

The mysterious dark matter that makes up most of the matter in the universe may behave more like wavy fluids than solid particles, helping to explain the shapes of galaxies, a new study suggests.

Dark matter is one of the greatest mysteries in the cosmos. It is thought to be an invisible and mostly intangible substance that makes up five-sixths of all matter in the universe.

The mainstream focus for dark matter has been on massive fermions, said study co-author Tom Broadhurst, a cosmologist at the University of the Basque Country in Spain. However, so far these fermion candidates for dark matter have not been generated by the Large Hadron Collider  (LHC), the most powerful particle accelerator on Earth, nor have any been confirmed by the Large Underground Xenon (LUX) experiment, the most sensitive dark-matter detector ever built.

The scientists found these dark matter Bose-Einstein condensates are full of waves. Stable waves known as soliton waves are expected in the middle of galaxies, "surrounded by extended lumpy halos of dark matter comprised of giant quantum density fluctuations that fluctuate over time," Broadhurst said. This behavior can help explain both the size of the dwarf spheroidal galaxies seen and why dark matter is distributed relatively smoothly within them.

Another consequence of dark matter Bose-Einstein condensates is that galaxy formation should have begun about 330 million years after the Big Bang. This is substantially delayed compared to models that envision dark matter being made of fermions, which suggest that galaxy formation should have begun about 50 million years after the Big Bang. Future observations by NASA's Hubble Space Telescope could help determine whether dark matter consists of fermions or bosons, study team members said.

Follow us @Spacedotcom, Facebook or Google+. Originally published on Space.com.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.

Charles Q. Choi
Contributing Writer

Charles Q. Choi is a contributing writer for Space.com and Live Science. He covers all things human origins and astronomy as well as physics, animals and general science topics. Charles has a Master of Arts degree from the University of Missouri-Columbia, School of Journalism and a Bachelor of Arts degree from the University of South Florida. Charles has visited every continent on Earth, drinking rancid yak butter tea in Lhasa, snorkeling with sea lions in the Galapagos and even climbing an iceberg in Antarctica. Visit him at http://www.sciwriter.us