Future Space Explorers Could Be Humans 2.0
Astronauts need to wear protective gear to venture out into space. Not only do their lives depend on the spacesuit working properly, but they must limit their time in space because the suits don’t provide much radiation shielding.
Credit: NASA

The future of space exploration is evolving into a hybrid of human and robotic expeditions, one which may change the shape of humanity in space.

In Part 1 of this report, James Hughes, a medical ethicist at Trinity College in Hartford, Conn., argued that we are already living in the Age of the Cyborg, with medical advances such as LASIK eye surgery blurring the line between natural and technologically-enhanced humans.

Kevin Warwick of the Cybernetic Intelligence Research Group at the University of Reading in England decided to brave this new frontier for himself by surgically implanting a computer device into his arm to try to send electrical signals to his brain.

Here these experts tackle more looming questions in Part 2.

To Infinity and Beyond

Robots have been making great strides in the final frontier. From the MER rovers, now in their seventh year of exploring the surface of Mars, to the Huygens probe on Saturn's moon Titan, to the Voyager spacecraft traveling to the farthest reaches of our solar system and, perhaps one day, the nearest stars, it seems that machines have us beat when it comes to exploring space.

Robots can get their energy from nuclear batteries or solar panels rather than food. They don't need sleep or water or oxygen, and the long-term effect of radiation is not as destructive as it is for humans. Setting aside the example of HAL 9000 in Arthur C. Clarke's story 2001: A Space Odyssey, computers are more psychologically suited than humans to spend eternity alone in the cosmos.

NASA has several projects underway to develop better "human-machine interfaces." The goal of this research is to improve communication between people and computers, making the machines our "avatars" for space exploration.

Hughes thinks there will come a day when this kind of research will allow us to manipulate robots and other machines as easily and naturally as we move our own body.

"I imagine that as soon as we have this kind of direct control over our various kinds of machines, our way of perceiving ourselves will change, just like we currently see our cell phones and cars as extensions of ourselves," says Hughes.

Perhaps a brain implant linking us to our robots would be the next step in space exploration, greatly reducing communication time across the vast expanse of space. For instance, depending on where Mars is in its orbit, it takes between 3 to 30 minutes for a radio message sent from Earth to reach Mars, and then an equally long time for us to get the response. For more distant destinations, the message relay would take even longer. But thought communication could be virtually instantaneous.

Warwick says that implanting computer chips in the brain to improve communication is a fairly straight-forward development, much as the telephone was the next step from the telegraph.

"The concept of a talking telegraph was considered crazy," says Warwick. "I think there's an element of that [when people consider communicating via brain implants], instead of seeing the scientific potential."

One debate in the space community is whether humans or robots should be sent to explore. While there are compelling arguments for both sides, we must find a way to make extended human space travel feasible if we hope to survive when our Sun becomes a Red Giant star in about 5 billion years. When this happens, our planet and all life on it will be consumed. But perhaps by this point in the future, we may have become so merged with our machines that the "human versus robots" debate is moot.

In fact, that's the conclusion reached by scientists involved in the search for extraterrestrial intelligence (SETI). Paul Davies, a SETI scientist at Arizona State University, says in his book The Eerie Silence that any aliens exploring the universe will be machine hybrids. Not only are machines better able to endure extended exposure to the conditions of space, but they have the potential to develop intelligence far beyond the capacity of the human brain.

"I think it very likely ? in fact inevitable ? that biological intelligence is only a transitory phenomenon, a fleeting phase in the evolution of the universe," Davies writes. "If we ever encounter extraterrestrial intelligence, I believe it is overwhelmingly likely to be post-biological in nature."

Hughes completely agrees that space travelers will likely be mechanical rather than organic. "If you're looking out 200 years into the future of the colonization of space, humans are probably not going to be a factor," he says.

The Human Element

Those who do not wish to become cyborgs (and who do not embrace our cyborg overlords) may become depressed by such conclusions.

One of the biggest concerns about our future as cyborgs comes out of our experience with computers. If all our brains are connected, what happens if a computer virus is introduced? How will we be able to maintain our privacy if a hacker can plug into our brain? Will there even be such a thing as an individual identity, or will we become like ants in a colony or bees in a hive?

Human-cyborg insect colonies may seem like science fiction, but cyborg insects are now being developed by the U.S. military's Defense Advanced Research Projects Agency (DARPA). Their "HI-MEMS" project inserts a computer chip into an insect pupae, and the chip becomes connected to the body as the insect develops.

"Since a majority of the tissue development in insects occurs in the later stages of metamorphosis, the renewed tissue growth around the MEMS will tend to heal, and form a reliable and stable tissue-machine interface," says the HI-MEMS website.

Electrical signals could directly stimulate muscles, cells or neurons, while ultrasonic pulses, pheromones, and optical cues also could be used to control the insect's flight. In this way, DARPA hopes to create unobtrusive and cheaply-made cyborg spies.

According to the HI-MEMS website, "The intimate control of insects with embedded microsystems will enable insect cyborgs, which could carry one or more sensors, such as a microphone or a gas sensor, to relay back information gathered from the target destination."

While the program has created cyborg beetles and moths so far, it's not yet ready to release swarms of insect spies. DARPA also has funded research to develop cyborg sharks, where smells and electrical signals are used to steer the sharks in desired directions. Other experiments by various researchers to merge animals and machines have used pigeons, cats, and rats. Such experiments are staples of science fiction, from the cyborg dolphin in William Gibson's Johnny Mnemonic to the housefly monitors in Philip K. Dick's Lies, Inc.

For every dystopian tale of the potential evils of science, there are just as many hopes of how science could free us from a long list of medical maladies. The future of cyborg science likely will be a complicated mix of both good and bad outcomes. Warwick says that scientists, who are driven to investigate for the sheer joy of discovery, don't spend too much time worrying about the practical results of their research.

"I think it's important to be aware and to try to discuss the positive and negative sides," says Warwick. "But to be honest, you never know. With the RFID implant that I had, which was a relatively trivial thing, I found out that a nightclub in Barcelona uses it as a fashion item to attract people to come to the nightclub. You don't have to pay for your drinks; it's all charged to your implant. So there's always going to be something around the corner that you'd just never imagined."