Reference:

Solar Dynamics Observatory: Staring at the Sun

detailed image of the Solar Dynamics Observatory
The Solar Dynamics Observatory has a Helioseismic and Magnetic Imager (HMI), an Atmospheric Imaging Assembly (AIA), an Extreme Ultraviolet Variability Experiment (EVE), as well as solar arrays and high-gain antennas.
Credit: NASA.

The Solar Dynamics Observatory is a NASA spacecraft launched in 2010, in time to catch sunspot and solar activity at its peak in 2013 as a part of the sun's 11-year cycle.

The satellite spends 24 hours a day, seven days a week staring at the sun, recording high-definition views of the sun's atmosphere in detail never seen previously.

In addition to simply observing the sun, NASA is using this observatory to get better at predicting solar activity. SDO aims to provide insights on the structure of the sun's magnetic field, as well as how energy is transferred from the sun into space.

So far, SDO has captured high-resolution views of solar flares, provided more information on predicting magnetic activity, and even captured a planet going across the face of the sun (from the perspective of Earth.)

An IMAX view

SDO is the first of NASA's Living With a Star program probes. The sun is an invaluable source of energy and warmth for the planet, but its variability can at time cause problems. A large solar storm has the capability to knock out power lines or communications satellites, for example. The program's major goal, therefore, is to understand why the sun's energy varies and how it can affect Earth.

One instrument on board is the Atmospheric Imaging Assembly, which can record pictures of the sun in IMAX resolution. With high-definition images available in most of the 10 available wavelengths every 10 seconds, it allows scientists to watch over the corona and see any changes — no matter what temperature. The continual observations were expected to yield more information on the causes of solar flares and coronal eruptions.

The other instruments are the Helioseismic and Magnetic Imager, which can track electric currents and magnetic activity in the corona, and the Extreme Ultraviolet Variability Experiment, which monitors ultraviolet solar emissions.

The spacecraft has a five-year life span, but officials are hoping to push it closer to 10. This would allow NASA to get a view of almost the entire 11-year solar cycle, allowing them to observe solar activity at a maximum and at a minimum and get a more complete data set.

Launch and first year in space

SDO cost $850 million to construct and launch. The satellite was lofted into space Feb. 11, 2010, aboard an Atlas 5 rocket from Cape Canaveral Air Force Station in Florida. From there, the satellite was placed in an inclined geosynchronous orbit that traces a figure-eight path every day above the Earth as it wayches the sun.

"SDO's inclined geosynchronous orbit was chosen to allow continuous observations of the Sun and enable its exceptionally high data rate through the use of a single dedicated ground station," stated the Solar Dynamics Observatory website.

Controllers were astounded at what SDO produced in its first year of observations, particularly its views of the sun's corona. Normally that portion of the sun is best visible during eclipses, but with SDO, scientists were able to watch what the corona was doing from its tip to the sun's surface.

"The science is really ramping up and it's very exciting to find out all the capabilities of the instruments," Phil Chamberlin, SDO deputy project scientist at Goddard Space Flight Center in Greenbelt, Md., told SPACE.com in 2011.

The mission has definitely exceeded my expectations so far — and my expectations were high to begin with."

Solar Quiz: How Well Do You Know Our Sun?
Many of us take the sun for granted, giving it little thought until it scorches our skin or gets in our eyes. But our star is a fascinating and complex object, a gigantic fusion reactor that gives us life. How much do you know about the sun?
This image, captured by NASA's Solar Dynamics Observatory (SDO) on March 10, 2012, shows an active region on the sun, seen as the bright spot to the right. Designated AR 1429, the spot has so far produced three X-class flares and numerous M-class flares.
0 of 10 questions complete
Solar Quiz: How Well Do You Know Our Sun?
Many of us take the sun for granted, giving it little thought until it scorches our skin or gets in our eyes. But our star is a fascinating and complex object, a gigantic fusion reactor that gives us life. How much do you know about the sun?
Start Quiz
This image, captured by NASA's Solar Dynamics Observatory (SDO) on March 10, 2012, shows an active region on the sun, seen as the bright spot to the right. Designated AR 1429, the spot has so far produced three X-class flares and numerous M-class flares.
0 of questions complete

Newer SDO developments

As the sun moved toward solar maximum in 2013, SDO's capabilities really began to shine for astronomers. A May solar flare was captured in high resolution, with pictures in multiple wavelengths showing the extent of the prominence eruption. The flare, though, was considered medium-sized, meaning that more spectacular eruptions could come before the cameras.

With SDO's eye on the sun, anything that passes in front of it could also be captured by camera. A notable example was Venus, which transited across the sun (from Earth's perspective) June 5-6, 2012. The event is predictable but extremely rare; the transit before was in 2004, but the next one won't occur until 2117.

That same year, SDO captured a solar "tornado" that was five times wider than Earth, moving across the sun's surface — in both images and video. At the time, NASA said this was likely the first time a video had been caught of the activity.

The tornado was shaped by the sun's magnetic field; Earth's, by contrast, occur due to wind activity. It also moved a lot faster; scientists estimated the sun's tornado whirled at up to 186,000 mph (300,000 kph), while an Earth storm typically goes no faster than about 300 mph (483 kph).

SDO had a popular chicken mascot called Camilla Corona SDO, who regularly attended NASA Social events and even once took a balloon ride to the end of space. The mascot was reassigned to more general public relations work in 2013.

Correction: This article was updated Dec. 13, 2013, to correct the description of SDO's orbit.

More from Space.com